
On Computability 1 

 
Darius Lorek 

 

December 30, 2022 

  

Abstract  

 

In this first document on computability, we introduce the constraint satisfaction model of 

computation and show how powerful it is for both the theoretical considerations and the 

practical solutions of specific configuration and matching problems. First of all, we recall 

some of the elementary concepts of computer science. A basic level of understanding of these 

concepts is prerequisite and will be assumed. Detailed information can be obtained from 

internet or from the relevant literature - we will specify some references to it.      

 

1 Turing Machines 
 

A Turing Machine (TM) is a theoretical model of computation and can recognize the widest 

class of formal languages: the recursively enumerable languages.  

The idea behind it is, that a TM, which is composed of a strip of tape divided into discrete cells, 

each of which can hold a single symbol drawn from a finite set of symbols of an alphabet, and 

a r/w head, positioned over these cells, which has a state selected from a finite set of states can 

read/write from/into these cells and then change the state acc. to a transition function, which 

determines what to do for each combination of the current state and the symbol that is read, and 

move then one cell to the right or to the left. Doing so a TM can recognize, if a word written on 

the strip at the beginning of the computation belongs to a defined formal language. We can 

implement every algorithm in this relatively simply computational model, compute every 

computable function. As a first step in this blog, we show that other equivalent models of 

computation can realise a more convenient handling of problems like pattern recognition. Once 

defined we choose one of these models to implement a concrete pattern recognizer for concrete 

human languages.   

 
a simple TM (a0, …, an alphabet symbols; B blank; X, Y status; L/R left/right) 

 

The tape above is finite to the left and endless to the right of the head. It can be proven, that 

an unrestricted tape for both sides doesn’t increase the computability class of a TM, like the 

class of recognizable formal languages. The same holds for the usage of more than one tape. 

All these extended TMs can be simulated by a TM described above. We give now a formal 

definition. A Turing Machine (TM) is a 7-tuple (Q, Σ, Γ, f, q0, B, F) where 

 

 Q is a finite set of head states 

 Σ is a finite set of valid input symbols, a subset of Γ 

https://en.wikipedia.org/wiki/Discrete_mathematics
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Finite_set


 Γ is a finite set of valid tape symbols  

f is the transition function Q × Γ → Q × Γ × {L, R}, can be undefined for some 

arguments 

 q0 from Q is the start state  

 B is the blank symbol, a member of Γ 

 F is a set of end states, F ⸦ Q 

 

We need to mention, that time as resource doesn’t matter in these preliminary considerations. 

 

2 Equivalence between Type-0 formal grammars and Turing Machines 
 

Typo-0 grammars include all formal grammars and thus is the widest class of formal 

grammars. They generate all languages that can be recognized by a TM. They are defined as a 

4-tuple (V, T, P, S) where 

 

 V is a finite set of variables 

 T is a finite set of terminal symbols (V and T are disjunct) 

 P is a finite set of productions of the form A ∊ V → α ∊ (V ∪ T)* 

 S is a member of V, the start symbol 

 

Example. With that definition we can define the set of arithmetic expressions with the 

operators {+, -, *,  /} and with additional terminal symbols {(, ), id (as a symbol for an 

operand)} and the productions:  

P := {E → E + E, E → E - E, E → E * E, E → E / E, E → (E), E → id} 

The last production of P states, that a single operand is an expression. This grammar can be 

then defined as ({E}, {+, -, *,  /, (, ), id}, P, E) and we would be able to generate arithmetic 

expressions like: 

E ⟹ E * E ⟹ (E) * E ⟹ (E) * id ⟹ (E + E) * id ⟹ (E + id) * id ⟹ ((E) + id) * id  

⟹ ((E - E) + id) * id ⟹ ((E - id) + id) * id ⟹ ((id - id) + id) * id 

The last derived word doesn’t contain any variables, so it is a valid word of the language 

defined above (the language of arithmetic expressions). For convenience we will use a shorter 

representation of the production set as:  

P := {E → E + E | E – E | E * E | E / E | (E) | id} 

 

Example. A grammar, which generates the set {a2ⁿ | n ∊ N, n ≥ 1} (2ⁿ the positive power of 2) 
can be defined as ({A, B, C, D, E, S}, {a, є}, P, S)} with: 

P := {S → ACaB, Ca → aaC, CB → DB | E, aD → Da, AD → AC, aE → Ea, AE → є} 

є is here a special symbol representing the blank. We recommend to generate a few words 

with this production set to understand the generation mechanism.     

  

We owe the proof that both models, TMs and the Type-0 formal grammars, are equivalent. 

If L = L(G) is generated for a non-restricted grammar G = (V, T, P, S), then L is a recursive 

enumerable language. 

 

Proof. We use a 2-tape TM M (a 2-tape TM can be simulated by a 1-tape TM), which 

recognizes L(G). The first tape is an input tape with a string ω, which we want to examine. 

The second tape we use for the expression α of G, which represents the current state of the 

word generation. At the beginning M initialises α with S. Then M repeats following steps: 

1. A position i will be chosen within α in a non-deterministic way ( 1 ≤ i ≤ | α | ) 

2. From the set of productions, a production β → γ will be selected non-deterministically 



3. If β exists from position i in α, so β will be replaced by γ which creates a new α         

(if | ß | < | γ | then additional place on the tape will be arranged moving the symbols 

right of β sufficient many cells to the right, if | γ | < | ß | the new blanks right of γ after 

replacement of ß by γ will be erased moving the rest string sufficient many cells to the 

left. This can always be achieved by the use of additional states in the head of M) 

4. Then the new α will be compared with ω. If they are equal ω will be accepted as 

belonging to L(G). If not, we proceed with step 1                   

Clear, on the tape 2 occur only expressions of G, so M will accept if ω ∊ L(G). Thus L(G) ⸦ 

L(M) is recursive enumerable.             ◻ 

 

For the other direction (if L is a recursive enumerable language than L = L(G) for a non-

restricted grammar G) we introduce a new symbol ⩮> which represents the transitive closure 

of a single derivation ⟹. E ⩮> α means that we can generate α starting from E in one or 

many steps. 

    
Proof. L is accepted by the TM M = (Q, Σ, Γ, f, q0, B, F). We will construct a grammar G, 

which generates non-deterministic a word from Σ* in the form [a1, a1]…[an, an], where the 

first components of the 2-tuples don’t change and the actions of M will be simulated on the 

second components. If M accepts the word a1…an then the grammar will transfer the word of 

the form [a1, a1]…[an, an] into a word consisting only of terminal symbols. If M doesn’t 

accept then the derivation doesn’t end in a terminal word. A non-deterministic generation 

ensures that any arbitrary word can be examined. 

G is defined as G = (V, Σ, P, A1) where V = ((Σ ∪ {є}) × Γ) ∪ Q ∪ {A1, A2, A3} and P is a set 

of following productions: 

(1) A1 → q0A2 

(2) A2 → q0[a, a]A2 for all a ∊ Σ | A3 

(3) A3 → [є, B]A3 | є 

(4) q[a, X] → [a, Y]p for all a ∊ Σ ∪ {є}, all q ∊ Q and X, Y ∊ Γ with f(q, X) = (p, Y, R) 

(5) [b, Z]q[a, X] → p[b, Z][a, Y] for all a, b ∊ Σ ∪ {є}, all q ∊ Q and X, Y, Z ∊ Γ  

with f(q, X) = (p, Y, L) 

(6)  [a, X]q → qaq, q[a, X] → qaq, q → є for all a ∊ Σ ∪ {є}, all q ∊ F and X ∊ Γ 

 

The above definition seems more complicated than it really is. Productions (1), (2) and (3) 

serve as generator for a word to be examined. (2) generates the word in the form of  

[a1, a1]…[an, an] and (3) “allocates” space right of the word, which is needed to simulate M. 

(4) and (5) simulate the transition function f with the move of the head one cell to the right (4) 

or to the left (5). (6) converts the expression to a terminal word in case M accepted a1…an, 

which means the final state of M is from the set of end states F. 

We assume that M accepts the word a1…an and uses m cells right of the word in this process. 

After execution of the productions (1), (2) and (3) we get: 

A1 ⩮> q0[a1, a1]…[an, an][є, B]m 

Now we can apply (4) and (5) in simulation of M until an end state will be generated. We 

keep the original word in the first components of the 2-tupels, so the last step is to extract this 

terminal word out of the expression in case q ∊ F ⸦ Q. For q ∉ F these productions (6) don’t 

exist, so the terminal word can’t be extracted. We can show by the induction over the step 

number of M processing that: 

 if q0a1…an ⩮>(ᴹ) X1…Xr-1qXr…Xs  

then q0[a1, a1]…[an, an][є, B]m ⩮>(ᴳ) [a1, X1]…[a r-1, Xr-1]q[a r, Xr]…[an+m, Xn+m] (2.1) 

where a1,…,an ∊ Σ, an+1 = an+2 = … = an+m = є, X1…Xr-1Xr…Xs ∊ Γ, Xs+1 = Xs+2 =…= Xn+m = B 

The induction hypothesis is trivially true for 0-movement (r = 1, s = n). We assume, that 2.1 

holds for k-1 movements and: 



 q0a1…an  

𝑘−1
⇒  (ᴹ) X1…Xr-1qXr…Xs 

     
⇒(ᴹ) Y1…Yt-1pYt…Yu 

If t = r+1 so the head movement was to the right, so f(q, Xr) = (p, Yr, R). But production 

(4) of G says, that q[a, X] → [a, Y]p so: 

q0[a1, a1]…[an, an][є, B]m ⩮>(ᴳ) [a1, Y1]…[a t-1, Yt-1]p[a t, Yt]…[an+m, Yn+m]  (2.2) 

with Yi = B for i > u. 

If t = r-1 so the head movement was to the left, so f(q, Xr) = (p, Yr, L) with r > 1. But 

production (5) of G says, that [b, Z]q[a, X] → p[b, Z][a, Y]  so again: 

q0[a1, a1]…[an, an][є, B]m ⩮>(ᴳ) [a1, Y1]…[a t-1, Yt-1]p[a t, Yt]…[an+m, Yn+m]  (2.2) 

with Yi = B for i > u. 

Applying production (6) of G we get: 

[a1, Y1]…[a t-1, Yt-1]p[a t, Yt]…[an+m, Yn+m] ⩮>(ᴳ) a1,…,an if p ∊ F. 

Thus, we have shown, that A1 ⩮>(ᴳ)  ω is true, if ω ∊ L(M) and so L(M) ⸦ L(G). With the 

other proof direction, we obtain L(M) = L(G).       ◻     

 

Both computation models are then equivalent. However, both are somehow unhandy when it 

comes to practical computation. We introduce two another computational models, which are 

equivalent to Type-0 formal grammars and Turing Machines and which are suitable in use 

with regard to pattern or string recognition and configuration problems.  

 

3 Equivalence between WHILE computation and Turing Machines 
 

We define now inductively WHILE programs as: 

 

xi := xj ± c is a WHILE program for every i, j, c ∈ N0 (addition/subtraction) 

If P1, P2 are WHILE programs, then P1; P2 is a WHILE program (composition) 

If P is a WHILE program, then WHILE xi ≠ 0 DO P END for every i ∈ N0 (WHILE loop)  

 

Strings built from a finite set of input symbols Σ can always be considered as numerical 

values of basis | Σ | (| Σ | the number of members in Σ). The replacement of a character ai(old) 

by the character ai(new) in a string s := ‘a0…ai(old)…an’ → ‘a0…ai(new)…an’, i ∈ {0, .., n} can 

then be seen as an numerical operation (we take thereby a0 as the most right digit): 

snum := snum - yi(old) * | Σ |i; snum := snum + yi(new) * | Σ |i 

and multiplication can be naturally represented as: 

y0 * x0 (y0, x0 ∈ N0): c := x0;x0 := 0; WHILE y0 ≠ 0 DO x0 := x0 + c; y0 := y0 – 1 END; 

res := x0 

which holds even for decimal numbers, when we strip off the decimal point from the decimal 

numbers, multiply them as natural numbers and set the decimal point in the result in due 

place.   

 

Example. The change of string s := ‘83775021’ → ‘83715021’ as a natural number a = int(s), 

a ∈ {0, .., 9}* we trivially build two sums: 

snum := 83775021 – 7 * 104 = 83705021; snum := 83705021 + 1 * 104 = 83715021 

 

Definition. IF clause (IF y0 ≠ 0 THEN P1 ELSE P2) can be simulated by a WHILE program 

as:   

z := y0; 

WHILE y0 ≠ 0 DO P1; y0:= 0 END; 

y0 := z; 

WHILE y0 = 0 DO P2; y0:= 1 END; 

y0 := z; 

with the restriction, that P1 or P2 don’t manipulate z inside P1 or P2.  



 

We proof now the equivalence of the WHILE computation and Turing Machines. 

 

Proof. Word ω is accepted by the TM M := (Q, Σ, Γ, f, q0, B, F) defined like above. We show 

that M can then be simulated by the WHILE program W as follows: 

 

ω = a1…anBBB…;    - (a1,..,an ∊ Σ) 

y := num(ω);    - y of type integer, not limited 

stat := q0;    - start status  

i := 1;     - head on position 1 at the beginning of computation 

running := 1; 

WHILE running ≠ 0 DO 

 e := y mod | Σ |i; 

 c := 0; 

WHILE e ≥ | Σ |i-1 DO e := e - | Σ |i-1; c := c + 1 END;    (3.1) 

 

d := fchar(stat, c); 

y := y - c * | Σ |i; 

y := y + d * | Σ |i; 

statNew := fstat(stat, c); 

j := fstep(stat, c);         (3.2) 

IF i > 1 THEN i := i + j; ELSE IF  j ≠ -1 THEN i := i + j;    (3.3) 

stat := statNew; 

 

IF stat ∊ F THEN running := 0       (3.4) 

END 

 

At the beginning of the computation, we convert the word ω into a numerical value of basis 

| Σ | and assign this value to the variable y. The variable y isn’t limited in space so we can 

assign any value to it. Then we manipulate this value according to the processing of M. The 

strip of tape in M is traditionally restricted to the left. We follow this tradition so the 

conversion includes mirroring of ω and thus the most left cell i = 1 of M represents the 

rightest digit of y. At the beginning all cells right of i = n are blank (B) and the head is placed 

on cell i = 1.   

The statements in the outer WHILE loop until (3.1) serve to extract the value of cell i resp. the 

digit in position i, which is assigned to the variable c. The transition function f of M is divided 

into three parts, which yield the new value of cell i according to fchar, the new head status 

statNew according to fstat and the value j ∈ {-1, 0, 1}, which represents the movement of the 
head to the left, no movement or movement to the right, according to fstep (3.2). (3.3) 
calculates the new head position i and (3.4) checks if the new status stat ∊ F and 

terminates the computation in positive case.       ◻   
 

During the computation the r/w head of M can move over cell n and use the cells right of it. 

Therefore, y can’t be limited to a highest value. M prevents a position of the r/w head left of 

the first cell - that is ensured for W by (3.3). The modulo function can easily be implemented 

with a WHILE loop. Eventually it should be noted, that WHILE programs do not always 

terminate and that the transition function f divided into fchar, fstat and fstep can be undefined for 

some inputs – analogue f in M. We still have to proof the other direction.   
 

Proof. Natural numbers can be represented in different ways on a tape stripe of a TM. We 

assume that W works with decimal numbers. However, any other basis for representation of 



numbers would exact an analogue approach. We use a three tapes TM M3, each for a different 

task, in the course of repeated addition/subtraction processing. We know, that our three-tapes 

Turing Machine M3 can be simulated by a one-tape Turing Machine M as defined above1. On 

tape 1 we keep the current number to add/subtract in the decimal representation (with sign), 

but we reverse the digit order, so the first digit to the right of the sign is the digit of the lowest 

arity, as we use a left-limited tape (see below). On tape 2 we keep the power of 10 value 

corresponding to the digit position in the number processed on tape 1. We keep this value in 

unary representation (therefore 0 for the lowest digit, 0000000000 for the second lowest and 

so on). We put the sign of the number being processed in the cell one on tape 2. On tape 3 we 

keep the current sum in unary representation, so that the number of nulls (0) represents the 

current intermediate result of our addition/subtraction. At the beginning of the whole 

computation process the tape 3 is empty. 

The initial allocations on the tapes are then as follows (see example for the number ±738; the 

r/w heads are at cells 1 for tape 1 or 2 and at an arbitrary cell for tape 3): 

 

 
 

Following transition function f adds the decimal number on tape 1 to the current unary sum on 

tape 3 leaving the new sum on tape 3: 

 

Tape 1 (main loop addition/subtraction, initial state qI) 

 

f(qI, +) = (qR, +, R)     move to the right 

f(qR, X) =  (uR, X-1, n) for X ∈ {1, …, 9}  e.g. f(qR, 8) = (uR, 7, n); n no head move  

… 

f(qR, 0) = (uI, 0, R)     move to the next cell to the right 

 

Tape 1 (main loop subtraction, initial state qI): 

f(qI, -) = (qL, -, R)     move to the right 

f(qL, X) =  (uL, X-1, n) for X ∈ {1, …, 9}  e.g. f(qL, 8) = (uL, 7, n); n no head move 

… 

f(qL, 0) = (uI, 0, R)     move to the next cell to the right 

 

Insert a new number to be added/subtracted: 

f(qR, B) → put new number ±y = num(ω) on tape 1, put ±0 on tape2, move to position 1 

f(qL, B) → put new number ±y = num(ω) on tape 1, put ±0 on tape2, move to position 1 

 

 

 
1 see e. g. in J. E. Hopcroft, J. D. Ullman: Introduction to Automata Theory, Languages, And 

Computation for a proof, that multi-tape TMs and TMs with tapes unlimited on both sides can 

be simulated by a “standard” TM as defined above. 

 



Check condition after every loop: 

IF tape 3 = <empty> THEN state = qF and accept ELSE state = qI 

 

On tape 2 we generate and keep 10i of 0s, where i ∈ N0 is the position of the digit processed 

on tape 1 (the most left position is i=0). Beginning with the first digit, each time we move one 

position to the right i → i+1 on tape 1 we create 10i+1 of 0s on tape 2. Remark2 

 

Tape 2 (creation of 10i+1 of 0s to the right of the sign cell in the situation, that we have 

currently 10i 0s on the tape 2) 

 

In the first processing block we set a boundary sign at the beginning (#) and the end ($) of the 

current string of 0s, so the first 0 will be replaced by # and the last by $: ±00…00 → ±#0…0$ 

f(uI, +) = (uI, +, R) 

f(uI, -) = (uI, -, R) 

f(uI, 0) = (uK, #, R)    replace first 0 by # 

f(uK, 0) = (uK, 0, R)    move to the right over the 0s until 

f(uK, B) = (uM, B, L)   blank is reached, then move to the left 

f(uM, 0) = (u#, $, n)   replace last 0 by $ 

f(uM, #) = (u9, $, R) in the initial case with only one 0 moving left we find 

here the already set #, replace then # by $ so ±# → ±$ 

  

Beginning at the cell with #, which we change to 0, we make 9 additional steps to the right, 

over existing 0s or creating new 0s, in case the cell is still blank B, and then set the # mark at 

the 10th position. We don’t overwrite the $ mark 

f(uX, 0) = (uX-1, 0, R) for X ∈ {1, …, 9}  e.g. f(u8, 0) = (u7, 0, R) 

… 

f(uX, B) = (uX-1, 0, R) for X ∈ {1, …, 9}  e.g. f(u8, B) = (u7, 0, R) 

… 

f(uX, $) = (uX-1, $, R) for X ∈ {1, …, 9}  we don’t change the $ mark in the string 

 

After these 9 steps we reach the status u0 and depending on the current cell content we 

f(u0, 0) = (u$, #, n)     replace 0 by # and change the state to u$ 

f(u0, B) = (u$, #, n)     replace B by # and change the state to u$ 

f(u0, $) = (uR, #, L)     replace $ by #, reach state uR and 

f(uR, 0) = (uM, $, R)     place $ left of # so ..00$0..  →  ..0$#0.. 

 

Seach for the $ mark and place the r/w head on this cell 

f(u$, X) =  (u$, X, R) for any X but B  find the first blank to the right 

f(u$, B) = (uF$, B, n) 

f(uF$, X) =  (uF$, X, L) for any X but $  then find $ moving to the left 

f(uF$, $) =  (uW , $, n)     change the state to uW 

 

Seach for the # mark and place the r/w head on this cell 

f(u#, X) =  (u#, X, R) for any X but B  find the first blank to the right 

f(u#, B) = (uF#, B, n) 

f(uF#, X) =  (uF#, X, L) for any X but #  then find # going to the left 

 
2 we leave it to the reader to write out the function f for the check if tape 3 is empty and to 

prepare tape 1 and tape 2 for the next addition/subtraction in case we didn’t reach the final 

state qF in the current loop. 
 



f(uF#, #) =  (u9, 0, R)  replace # by 0, change the state to u9 

(repeat the 9 step process) 

 

Once we have found $ we move it one cell to the left, if we reach the first cell with ± the  

creation process of 10i+1 0s on tape 2 ends 

f(uW, $) = (uW, 0, L) 

f(uW, 0) = (u#, $, n) 

f(uW, #) = (u9, $, R)     ..0#$.. -> ..0$0.. 

f(uW, +) = (uZ, +, R) 

f(uW, -) = (uZ, -, R) 

 

f(uZ, 0) = (uZ, 0, R)     move to the end of the string on tape 2 and 

f(uZ, #) = (uV, 0, n)     replace # by 0 at the end of the string 

f(uV, 0) =  (uV, 0, L)     move to the begin of the string and  

f(uV, +) =  (qR, +, R)     place the head on first 0, return to tape 1 

f(uV, -) =  (qL, -, R)      place the head on first 0, return to tape 1 

 

In this way we generate a 10i+1 long string of 0s from a string of 10i 0s on tape 2 each time we 

move one cell to the right on tape 1. It remains to build a sum in unary representation on tape 

3. To do so we traverse the string of 0s on tape 2 and transfer every 0 onto tape 3 each time 

we decrease a digit of the number on tape 1 by 1. 

 

f(uR, 0) =  (tR, 0, R)    if we read a 0 on tape 2 we write it onto tape 3 

f(uL, 0) =  (tL, 0, R)    if we read a 0 on tape 2 we write it onto tape 3 

f(uR, B) =  (uV, B, L)    if we find a blank B we move back to the first 0 

f(uL, B) =  (uV, B, L)    if we find a blank B we move back to the first 0 

 

Tape 3 (creation of the sum in unary representation, tape is unlimited on both sides) 

 

Addition 

f(tR, 0) = (uR, B, R)    replace 0 by B then move to the right 

f(tR, B) = (uR, 0, R)    replace B by 0 then move to the right 

 

Subtraction 

f(tL, 0) = (tK, 0, L)    move first to the left 

f(tL, B) = (tK, B, L)    move first to the left 

f(tK, 0) = (uL, B, n)    then replace 0 by B 

f(tK, B) = (uL, 0, n)    then replace B by 0 

  

Please note: we start with an empty tape 3 and an arbitrary placed r/w head so ..BBB.. 

represents a 0 value (underscore indicates here the position of the r/w head). In unary 

representation the number i of 0s gives us the integer i ∈ Z. The sign is represented as the 

position of the head, which after each loop step can be at the first blank B to the right of the 

0’s-block (positive integer) or the most left 0 in the 0’s-block (negative integer), so e. g. 

..B0000B.. represents -4 and ..B0000B.. represents +4. However, our focus lies here not on 

the evaluation of a result value but on checking if the tape 3 = 0, which means that we 

attained the final state qF, and accepted the examined word. Note further, that the state 

determines on which tape the next operation takes place, so the states q… indicate, that we 

operate on tape 1, u… on tape 2 and t… on tape 3.  

 



With the above definition of the transition function f we show by induction over the number 

of loops in W, that TM M3 generates an unary result char(yk) if W computes the sum yk after 

k loops. M3 terminates if the WHILE program W reaches yk = 0 during the computation 

according to the loop condition WHILE yk ≠ 0 DO P END. Naturally, we can’t say if W will 

terminate at all, we solely make sure that TM M3 simulates W properly. 

 

The induction hypothesis is trivially true for a 0-loop, where y = num(ω) = 0, so the tape 3 of 

M3 remains empty and M3 reaches its final state as after f(qI, +/-) = (qR/L, +/-, R) the r/w head 

moves to the right and we transfer 0s to tape 3 only for f(qR/L, X) =  (uR/L, X-1, n) for X ∈ {1, 

…, 9}. For f(qR/L, 0) = (uI, 0, R) we move to the right hit on a blank cell and check then tape 

3, which still remains empty. We assume then that the hypothesis holds for k-1 loops. We 

show that 

 

 y 
𝑘−1
⇒  (W) yk-1 

     
⇒(W) yk implies 

 

 ω = char(y) 
𝑘−1
⇒  (ᴹ) ωk-1 = char(yk-1) 

     
⇒(ᴹ) ωk = char(yk) 

 

The initial numerical value y is processed by the WHILE program W which evaluates the 

value yk-1 after k – 1 WHILE loops. The TM M3 := (Q, Σ, Γ, f, q0, B, F), which processes the 

word ω = char(y) = a1..anBBB.. (a1,..,an ∊ Σ) evaluates the word ωk-1 = char(yk-1) after 

simulation of k – 1 additions/subtractions. Let the word on tape 3 be then ωk-1 = b1101 + … + 

bi-110i-1 + bi10i + … + bj10j in unary representation.  

The next number to add/subtract is c so yk = yk-1 ± c and χ = char(c). But then ωk = ωk-1 ±s χ = 

char(yk-1) ±s char(c) = char(yk-1 ± c) = char(yk), where ±s is the simulation of the addition or 

subtraction in M3 and the conclusion follows from the additivity of char(x) regarding ±s. In 

other words, the result on tape 3 after one loop when we process char(yk) on an empty tape 3 

is the same as if we processed char(c) on a tape 3 containing the intermediate sum of 

char(yk-1) if yk = yk-1 ± c. In particular, if yk = 0 so tape 3 of M3 becomes empty and M3 

reaches the final state qF. 

Eventually, we have to show the correctness of the unary representation of integers on tape 3. 

We start with an empty tape and add 0’s to the left (subtraction) or to the right (addition) of 

the r/w head. We generate 0’s (left of the r/w head when we subtract from a negative integer 

or right of the r/w head when we add to a positive integer) or blanks (left of the r/w head 

when we subtract from a positive integer or right of the r/w head when we add to a negative 

integer) on tape 3 as packages of 10i 0’s corresponding to the decreasing integer to basis 10 at 

digit position i. After addition/subtraction of one integer c, tape 1 contains the integer 0 and 

tape 3 contains the unary representation of yk = yk-1 ± c, where yk-1 was the intermediate sum 

after k-1 additions/subtractions.         ◻ 

 

The definition of a TM and the traceability of its processing are not practicable for complex 

evaluations. In fact, it is a theoretical model of computation and we have proven, that more 

convenient models like formal grammars or WHILE programs are equivalent to TMs, in the 

sense that every function, which is Turing-computable, can be implemented by means of 

formal grammars or WHILE programs and that the opposite conclusion holds as well. We 

will go a step further and show the following equivalence.  

 

 

 

 



4 Equivalence between numerical WHILE computation and constraint 

satisfaction WHILE computation 
 

We introduce now a computational model which differs from the numerical WHILE 

computation only in the aspect, that we rather use Boolean operations instead of numerical 

during the WHILE computation. We define constraint satisfaction (cs) programs as a 4-tuple 

(Σ, Ψ, F, WHILE cs-program) where 

 

Σ is a finite set of valid input symbols αi, i ∈ {0, …, n} 

Ψ is a set of constraints ψk, k ∈ N with ψk: Σ → B or Σ × Σ  → B, αi  ↦ {0,1} or αi × αj ↦ 

{0,1} for αi, αj ∈ Σ 

F is a Boolean function F: Bd → B, ψ1(αi) ˄ … ˄ ψc(αj) ˄ ψc+1(αi, αj) ˄ … ˄ ψd(αi, αj) ↦ {0,1} 

for αi, αj ∈ Σ and ψ1, …, ψd ∈ Ψ 

 

For ψk(αi) = 0 or ψk(αi, αj) = 0 (false) we say that constraint ψk is not satisfied with αi resp. αi, 

αj else it’s satisfied. We look for one or many sets of symbols Si, which satisfy all ψ1, …, ψd ∈ 

Ψ. Σ can be a set of alphanumerical symbols or integers, so ψk(αi) can be defined e. g. as 

ψk(αi):= αi > C with a constant C (αi, C ∈ N0) or ψk(αi, αj):= αi > αj (αi, αj ∈ N0). Furthermore, 

we can define a set of constraints, which is variably large depending on the number of input 

symbols in the examined set e. g. ψk(αi, αi+1):= αi ≠ αi+1 so for a set {α1, α2} ψ1(α1, α2):=  

α1 ≠ α2 but for a set {α1, α2, α3} ψ1(α1, α2):= α1 ≠ α2 and ψ2(α2, α3):= α2 ≠ α3. 

 

With Si, Sj being defined as sets of input symbols and ⊕ as a change operator Si := Sj ⊕ Δs, 

which changes the input set Sj in an appropriate way according to the change set Δs we define 

now inductively WHILE cs-programs as: 

 

Si := Sj ⊕ Δs is a WHILE cs-program for every i, j ∈ N0 (change operator) 

If P1, P2 are WHILE cs-programs, then P1; P2 is a WHILE cs-program (composition) 

If P is a WHILE cs-program, then WHILE ψ1(αi) ˄ … ˄ ψc(αj) ˄ ψc+1(αi, αj) ˄ … ˄ ψd(αi, αj) 

≠ 1 DO P END for every i, j, c, d ∈ N0 (WHILE loop) 

 

As already stated, sometimes we are interested in only one, sometimes in many or all cs-

solutions for a set of constraints. We can relax the set of constraints and hope to obtain more 

solution sets for our problem or restrain the set of constraints by adding new constraints to try 

to reduce the number of solution sets. We show now the equivalence between the two WHILE 

program models and give an example for a hexadecimal representation.  

 

Proof. The change operator ⊕ can be interpreted as subtraction/addition of integers to basis 

| Σ | if we built a word ω = an…a0 where Sj = {a0, …, an} ∈ Σ and xj = int(ω), c = int(Δs) so  

xi := int(ω) ± int(Δs) = xj ± c.  

On the other hand, every subtraction/addition of integers represented to basis X = | Σ | can be 

expressed as a change operation when we define for all elements in Σ a change function P or 

M for addition/subtraction as P(ai, bi) = (aj, bi+1) or M(ai, bi) = (aj, bi+1) with ai, aj, bi, bi+1 ∈ Σ, 

the carry word β = bn+1bn…b0 and the following procedural rule: 

BUILD the word β = bn+1bn…b0, pad on the left side of ω, β with 0’s so length(ω) = length(β) 

WHILE β ≠ 0 DO  

for ai, bi ∈ Si evaluate a0, b1 = P(a0, b0), …, an, bn+1 = P(an, bn) (for addition)  

or a0, b1 = M(a0, b0), …, an, bn+1 = M(an, bn) (for subtraction) and BUILD the new word  

β = bn+1bn…b0 with b0 = 0   
END 

BUILD the result word ω = bn+1an…a0       ◻ 



 

Example. For hexadecimal signs {0, 1, …, 9, A, B, C, D, E, F} we would define P (addition) 

as:  

P(0, 0) = (0, 0); P(1, 0) = (1, 0); …, P(E, 0) = (E, 0); P(F, 0) = (F, 0)  

P(0, 1) = (1, 0); P(1, 1) = (2, 0); …, P(E, 1) = (F, 0); P(F, 1) = (0, 1)  

… 

P(0, E) = (E, 0); P(1, E) = (F, 0); …, P(E, E) = (C, 1); P(F, E) = (D, 1)  

P(0, F) = (F, 0); P(1, F) = (0, 1); …, P(E, F) = (D, 1); P(F, F) = (E, 1)  

 

It resembles the realisation of an adder by NAND-gates with a carry register, which uses 

nothing else as Boolean operations to implement addition/subtraction. Furthermore, we can 

easily see the commutativity of P. According to the above definition the “addition” of two 

hexadecimal words (e. g. 2F7BCC5 and 5EF189D) would yield in 2 loops: 

 

α = 2F7BCC5 → 7D6C452  → 8E6D562 

β = 5EF189D → 1101110 → 0000000 

so 2F7BCC5 + 5EF189D = 8E6D562 

 

A. Turing presented his model of computation (TM) in 1930’s. With it he was able to prove 

properties of computation in general, like the decision and completeness problem. Though 

with a TM we can implement any computer algorithm, it’s very laborious to formulate a TM-

code even for relatively simple problems. Therefore, other, equivalent models had been 

developed, which are more suitable for practical implementations. The cs-WHILE 

computation isn’t new but, to my knowledge, wasn’t used extensive, if at all, for theoretical 

considerations. With this model we can deal with theoretical problems as well as implement 

comprehensible solutions for very concrete tasks. In the two next chapters we implement cs-

solutions for two different problems: the map colouring problem and the pattern matching 

problem, which gives us a database for analysis of a putative plaintext in a substitution cipher. 

 

5 Coloring of a map 
 

The map colouring problem is the problem to colourise neighbour countries or regions 

(neighbour regions having a common border) with different colours on a map with many 

regions. There is one catch, we should use as few colours as possible. We don’t need to 

evaluate all possible solutions or all permutations of one solution, one single solution would 

satisfy our inquisitiveness as for this task. 

 

We choose thus a problem over regular sets, which are only subsets of recursively enumerable 

sets recognisable by a TM or a cs-WHILE program. This gives us however the certainty, that 

our algorithm will halt, with a solution for the problem or without. 

 

We take a concrete map - that of the cantons of the Swiss Confederation - and try to find a 

solution with a minimal number of colours. We don’t deal here with the four-colours problem 

as such - a theorem says, that no more than four colours are required to colour the regions of 

any map, if the regions are contiguous – but we expect to make do with 4 colours, despite the 

fact, that we have a few exclaves of some cantons, so that the regions aren’t always 

contiguous. We define a set of constraints Ψ of only one type ψ(a, b) := diff(a, b), which 

means a and b must be different and use the symbol # for the “different”-relation. 

 

 

 



With the cantons {0 Tessin, 1 Wallis, 2 Genf, 3 Waadt, 4 Freiburg, 5 Neuenburg, 6 Bern,  

7 Jura, 8 Basel-Stadt, 9 Basel-Land, 10 Solothurn, 11 Aargau, 12 Luzern, 13 Nidwalden, 

14 Obwalden, 15 Schaffhausen, 16 Zürich, 17 Thurgau, 18 St. Gallen, 19 Appenzell 

(Ausserrhoden/Innerrhoden), 20 Zug, 21 Schwyz, 22 Glarus, 23 Uri, 24 Graubünden} 

e. g. 0#1 means then, that Tessin and Wallis need to be coloured with different colours. 

 

We have to satisfy the following set of 54 constraints (see the map below): 

 

Ψ := {0#1 0#23 0#24 1#3 1#6 1#23 2#3 3#4 3#5 3#6 4#5 4#6 5#6 5#7 6#7 6#10 6#11 6#12 

6#13 6#14 6#23 7#9 7#10 8#9 9#10 9#11 10#11 11#12 11#16 11#20 12#20 12#21 12#13 

12#14 13#14 13#23 14#23 15#16 15#17 16#17 16#18 16#20 16#21 17#18 18#19 18#21 

18#22 18#24 20#21 21#22 21#23 22#23 22#24 23#24} 

 

 
 

We use bash scripts for the implementation of these simple cs-programs. Bash scripts can be 

run on Unix/Linux. On Windows e. g. Cygwin (a collection of GNU and Open Source tools 

which provide functionality similar to a Linux distribution on Windows) can be installed3 to 

run bash scripts. The code is as following (the arrays map and arr define the constraints Ψ 

and the set of result values, the last value of arr = 0 is a delimiter and not a result value):        

 
#!/bin/bash 

typeset -a map=(" 0#1 0#23 0#24 1#3 1#6 1#23 2#3 3#4 3#5 3#6 4#5 4#6 5#6 5#7 6#7 6#10 6#11 6#12 6#13 

6#14 6#23 7#9 7#10 8#9 9#10 9#11 10#11 11#12 11#16 11#20 12#20 12#21 12#13 12#14 13#14 13#23 14#23 

15#16 15#17 16#17 16#18 16#20 16#21 17#18 18#19 18#21 18#22 18#24 20#21 21#22 21#23 22#23 22#24 

23#24 ") 

typeset -a arr=(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0) 

typeset -i n=0 m=0 k=0 l=0 

 
3 we do not guarantee and do not assume any liability, that the script is runnable on your 

operating system, we could run it on Unix and port it successfully to Cygwin on Windows   
 

https://en.wikipedia.org/wiki/Linux_distribution


 

# main while loop 

 

while (( arr[++m] != arr[-1] )) 

do 

        while ((n < m )) 

        do 

                diffstr=" ${n}#${m} " 

                if [[ "${map[*]}" =~ "${diffstr}" ]]; then 

                #echo {$diffstr} 

                if (( arr[n] != arr[m] )); then (( n++ )) 

                else (( arr[m]++ )); (( n = 0 )) 

                fi 

                else (( n++ )) 

                fi 

        done 

        ((n = 0 )) 

done 

echo ${arr[*]} 

(( arr[m] == 0 )) && echo "assign colour [nb] to variables arr[0], ..., arr[24]" 

 

# try to resolve following constraints to obtain a 4-colour result 

 

while (( arr[++k] != arr[-1] )) 

do 

        if (( arr[k] > 4 )); then 

        while (( l < k )) 

        do 

                if [[ "${map[*]}" =~ " ${l}#${k} " ]]; then 

                echo "resolve constraint " ${l}#${k} " to potentially reduce the number of used colours" 

                fi 

                (( l++ )) 

        done 

        fi 

        (( l = 0 )) 

done 

 

When we put this code into the executable file swiss_map.ksh we obtain the following result: 

 
 

script_home@mycomp ~ 

$ ./swiss_map.ksh 

1 2 1 3 1 2 4 1 1 2 3 1 2 1 3 1 2 3 1 2 3 4 2 5 3 0 

assign colour [nb] to variables arr[0], ..., arr[24] 

resolve constraint  0#23  to potentially reduce the number of used colours 

resolve constraint  1#23  to potentially reduce the number of used colours 

resolve constraint  6#23  to potentially reduce the number of used colours 

resolve constraint  13#23  to potentially reduce the number of used colours 

resolve constraint  14#23  to potentially reduce the number of used colours 

resolve constraint  21#23  to potentially reduce the number of used colours 

resolve constraint  22#23  to potentially reduce the number of used colours 

 

 

We got a result for colouring of the cantons with 5 colours and a hint which constraints 

possibly contributed to the extension of the result set to 5 colours. We can try to introduce 

additional constraints or reduce the possible result value range for specified variables to 

obtain a 4-colour result. We do so for the variables arr[1] and arr[22] specified in the 

resolving hints above and reduce the value range for them to the colour value 3 and higher 

(excluding 1 and 2). We can re-run the script with the following definition of arr: 



 
typeset -a arr=(1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 0) 

 

Now we obtain the following 4-colour result (note, that we didn’t differentiate between 

Appenzell Innerrhoden and Ausserrhoden and are free to choose different colours for them as 

they are completely surrounded by the canton St. Gallen): 

 
 

script_home@mycomp ~ 

$ ./swiss_map.ksh 

1 3 1 2 1 3 4 1 1 2 3 1 2 1 3 1 2 3 1 2 3 4 3 2 4 0 

assign colour [nb] to variables arr[0], ..., arr[24] 

 

 

This 4-colour solution for our colouring problem would thus result in the following possible 

colouring: 

 

 
 

The resolving strategies (relaxation of constraints in case of too strong conditions or restraint 

of constraints in case of too many result sets) can be automatised. The program can learn from 

intermediate results how to manage the result sets and how to improve the computation in 

terms of reduction of time-consuming by changing the order of examined constraints. 

This meta-level inspection of the own solving process is a subject of AI. I will come back to 

this topic in the following papers. 

 

 
 


