
On Computability 1A

Darius Lorek

February 26, 2023

Abstract

We continue to show how constraint satisfaction can help solve various configuration and

pattern matching problems. Here, we focus on the topic of decoding. Decoding a substitution

cipher is a complex task, particularly when there is a lack of information about the plaintext

language or the type of encryption key used. For older ciphers, mathematical methods can be

ruled out, such as the RSA algorithm based on prime number encryption, which was

introduced in the 1970s. Therefore, for historical ciphers, we can assume that some kind of

substitution was involved.

We define a substitution cipher (not in a mathematical sense) as a code that uses glyphs,

signs, or letters to substitute for letters or phonemes of the plaintext language during the

encryption process. This replacement can be pre- or post-processed. As pre-processing, we

understand the obscuration of the plaintext before substitution, such as the usage of unusual

grammars, omitting words containing specific letters, interspersing abbreviations into the text,

or similar techniques. After the substitution, as post-processing, the resulting code can be

further obscured by replacing code letters at special positions with additional letters or

changing the order of the code letters.

For the following example, we investigate the Voynich Manuscript (VMS). We will not

provide an introduction to the history or an account of the decipherment attempts of this 15th-

century encoded script and will refer to numerous books on these topics. Instead, we will

jump directly into the decipherment process.

6 Pattern Matching (preliminary considerations)

We still use bash scripts for the implementation of the pattern matching routines. Bash scripts

can be run on Unix/Linux, on Windows e. g. Cygwin (a collection of GNU and Open Source

tools which provide functionality similar to a Linux distribution on Windows) can be

installed1 to run bash scripts.

We use the term “vord” for a word in Voynich language. We don’t know what exactly a vord

is, but assume that it’s one or many words of a plaintext. The term “word” we use only in

context of plaintext languages. As first step we examine the lexica of candidate plaintext

languages and scan them for patterns, which occur in the VMS. In the VMS we can find odd

vord patterns, among them patterns containing consecutive repetitions of the same glyph like

in ABBBBA or generally patterns of the type …BBB… It seems obvious, that such patterns

must be investigated with preference, as they make the difference to the word patterns we can

normally find in a vast majority of natural languages. As working hypothesis, we assume that

a glyph or letter in Voynichese stands mostly for the same plaintext letter.

1 we do not guarantee and do not assume any liability, that the script is runnable on your

operating system, we could run it on Unix and port it successfully to Cygwin on Windows

https://en.wikipedia.org/wiki/Linux_distribution

At first, we will search for such patterns in words or word combinations of plaintext

languages and extract them into output files. The idea behind this approach is, that among all

these extractions must be semantically correct word combinations, preconditioned that we

come across the correct plaintext language. In this first decoding step, we however won’t

examine semantics and deal almost exclusive with the syntax. The pattern matching routines

give us a database for further analysis of the potential plaintext.

The investigation shows quickly that as for the most of the languages there aren’t reasonable

pattern matches for the “abnormal” patterns like those mentioned above. The pattern matching

for long consecutive chains of the same letter generates no results at all or implausible results,

such as repetitions of the same, single, very short words like …ooo… -> or, or, or in Spanish

or …aaa…, …iii… -> and, and, and in Czech resp. Polish. The general problem here is a lack

of sufficient many short words and therefore a lack of short written expressions.

Hence, we are directed to languages with short words and writing systems, which makes the

written expressions even more compact, often at the expense of unambiguousness. One of these

writing systems is “Ketiv“ or “Ketib” (which means written), a system used for Hebrew and

Aramaic, in which vowels are written only exceptionally at the beginning or the end of the

words (vocal reduction). Later, with the help of the Masoretes (medieval Jewish scribe-

scholars) these old, mostly biblical Hebrew and Aramaic texts received a vocalisation

punctuation, which together with marginal notes (Qere, which means read), allowed a

standardisation for the vocalisation and pronunciation of the Ketiv-texts. We begin our

investigation with these languages and try to find patterns which correspond with patterns

existent in the VMS.

In the following chapters we describe the used routines and present the statistics for the

generated pattern matching results.

7 Pattern Matching (full evaluations)

The data basis for the pattern matching is a lexicon with 8675 Hebrew and Aramaic words2,

which on its part is a collection of different lexicons and Bible dictionaries. As for this

analysis we deviate from the conventional transliteration and base upon the abjad derived

from the standard transliteration with an additional replacement of all digrams by a single

letter or sign (ph → f, ch → x, sh → š, ts → ß and th → & respectively). The last replacement

(see table below) makes it more convenient to formulate the constraints and to analyse the

matches because now related characters in different words are at the same position inside

these words. In addition, the examination of billions word combinations is a time-consuming

task and every representation simplification reduces significantly the runtimes.

2 Hebrew Dictionary of the Old Testament Online Bible with Strong's Exhaustive

Concordance, Brown Driver Briggs Lexicon, Etymology, Translations Definitions Meanings

& Key Word Studies - Lexiconcordance.com

http://www.lexiconcordance.com/hebrew/
http://www.lexiconcordance.com/hebrew/
http://www.lexiconcordance.com/hebrew/

For performance reasons we split the Aramaic abjad database into 10 different files

(aramaic<n>.txt), each containing words of length n.

$ wc -l aramaic?.txt

 1 aramaic0.txt
 108 aramaic1.txt
 1341 aramaic2.txt
 3293 aramaic3.txt
 2115 aramaic4.txt
 1145 aramaic5.txt
 369 aramaic6.txt
 70 aramaic7.txt
 12 aramaic8.txt
 3 aramaic9.txt
 8457 total

We deal thus with 108 words of length 1, 1341 words of length 2, 3293 words of length 3, etc.

We ignore words longer then 9 (mostly composite proper names). This eventually reduces the

total count of examined words to 8457. See below the bash script extracting the pattern

ABBBB out of all possible word combinations in biblical Aramaic. The array arr contains all

word length combinations within a vord of length 5. Such a vord can be a word of length 5 or

a combination of two or more words of length < 5. We limit here the max. count of words

within a vord to 4, otherwise the words of length 1 would be highly overrepresented.

Furthermore, we take consecutive word repetitions of the same one-letter words out of

consideration. We regard such combinations as very unlikely. For the above pattern the valid

string length combinations are: 5 41 32 23 14 311 221 131 212 122 113 2111 1211 1121

1112. The string length combinations 311, 2111, 1211 and 1112 would violate the second

rule, so finally we examine here the combinations: 5 41 32 23 14 221 131 212 122 113 1121

(we right-pad the items of arr with 0’s to simplify the nesting of the while loops). The simple

set of constraints Ψ for ABBBB is then defined as Ψ = (0#1 1=2 2=3 3=4 $) specifying the

glyph positions within a vord and ‘#’ as a diff-constraint, ‘=’ as an equal-constraint and with $

as a terminal sign.

#!/bin/bash
#matching for pattern ABBBB (4 words max)
typeset -a map=(0#1 1=2 2=3 3=4 $)
typeset -a arr=(5000 4100 3200 2300 1400 2210 1310 2120 1220 1130 1121 0000)
typeset -i m=0
prefix=aramaic
pattern="ABBBB-"
output=matchesABBBB.txt

while ((arr[m] != arr[-1]))
do
s=${arr[m++]}
echo $s

file1="${prefix}${s:0:1}.txt"
echo $file1
file2="${prefix}${s:1:1}.txt"
echo $file2
file3="${prefix}${s:2:1}.txt"
echo $file3
file4="${prefix}${s:3:1}.txt"
echo $file4
echo "---"

main read loop
while IFS= read -r word1

 do
while IFS= read -r word2

 do
 while IFS= read -r word3
 do
 while IFS= read -r word4
 do
 vord="${word1}${word2}${word3}${word4}"
 #echo $vord
 for constr in "${map[@]}"; do
 if [[${constr:1:1} == "=" && ${vord:${constr:0:1}:1} != ${vord:${constr:2:1}:1}]]; then
 break
 fi
 if [[${constr:1:1} == "#" && ${vord:${constr:0:1}:1} == ${vord:${constr:2:1}:1}]]; then
 break
 fi
 done
 if [[${constr} == "$"]]; then
 #echo $constr >> $output
 echo "$pattern$vord" >> $output
 fi
 done < "$file4"

done < "$file3"
done < "$file2"

done < "$file1"
done

We are interested in all matches and are collecting them in an output file called

"matchesABBBB.txt". The result is a database of all word combinations in Biblical

Hebrew/Aramaic that match this pattern (see picture below). We use it for statistical analysis.

See below some concrete evaluations (please note that for Hebrew/Aramaic, the reading

direction is right to left, whereas for convenience, the transliteration is left to right).

1. _ccc9 (max 4 words; arbitrary last glyph in a 5-glyphs vord; all words match)

There were 5,233,545 matches out of 4,085,709,095 checks (~0.128%) in all word length-

combinations: 6000, 5100, 4200, 3300, 2400, 1500, 4110, 3210, 2310, 1410, 3120, 2220,

1320, 2130, 1230, 1140, 2211, 1311, 2121, 1221, 1131, 1212, and 1122. We are interested in

the most frequent chain BBB and the most frequent first letter within the vord (in the yellow

background, we show the top 5 most frequent letters and chains of letters, and their

percentage of occurrence among all matches).

Examples ABBBC Freq. _BBB_ % Freq. A____ %

lhhhy 1217065 lll 482476 l

lhhhy 1043278 rrr 481622 r

lhhhy 629764 nnn 438809 d

lhhhk 437352 ddd 405844 y

lhhhm 410725 ššš ~71% 383563 b ~42%

lhhhm 371976 zzz 369230 m

lhhhn 350627 mmm 305108 š

lhhhn 217852 fff 287751 z

lhhhc 212093 xxx 266531 t

lhhhf 103097 ggg 260354 x

lhhhf 54396 ccc 234745 &

2. 889 (max 3 words; all words match)

There were 99,231 matches out of 1,552,661 checks (~ 6.4%) in all word length-

combinations: 3000 2100 1200 1110.

Examples ABB Freq. _BB % Freq. A__ %

wnn 26024 ll 10847 l

ldd 18956 rr 10486 r

lhh 10794 dd 8632 d

mll 6770 yy 7434 y

fll 5764 mm ~69% 6926 b ~45%

rnn 5753 bb 6824 m

rnn 4255 šš 5932 š

&nn 4093 zz 5655 z

&nn 3082 ff 4909 t

bdd 2881 xx 4822 x

bdd 2762 && 4685 f

Bdd 2753 nn 4594 &

3. cccco (e. g. folio 66r; max 4 words; all words match)

There were 292,689 matches out of 2,358,025,751 checks (~ 0.012%) in all word length-

combinations: 5000 4100 3200 2300 1400 2210 1310 2120 1220 1130 1121.

Examples ABBBB Freq. _BBBB % Freq. A____ %

hllll 122608 llll 26772 r

hllll 67372 rrrr 23921 d

hllll 24958 dddd 22764 y

hmmmm 19522 nnnn 22067 l

hmmmm 13827 šššš ~85% 22050 m ~40%

hrrrr 13271 mmmm 21666 b

hrrrr 12855 zzzz 18095 š

hrrrr 6904 ffff 15972 z

zxxxx 6087 xxxx 15004 t

zxxxx 1564 gggg 14224 x

zllll 1112 hhhh 13077 f

zllll 767 cccc 12375 &

When analysing longer vords, these simple routines take too long (on >>1 billion checks) to

evaluate all matches. We can reduce the number of checks by limiting the pattern recognition

to unique word strings only. In this case, we reduce the number of one-letter words from 108

to 20. This may lead to an overrepresentation of word combinations with words having only

one meaning associated with an individual string but still provides a good estimation of the

frequencies of letter distribution within particular patterns.

4. 9cccc9 (e. g. folio 102v part1; max 4 words; unique words match)

There were 1,081 matches out of 302,662,492 checks (~ 3.57 e-4 %) in all word length-

combinations: 6000 5100 4200 3300 2400 1500 4110 3210 2310 1410 3120 2220 1320 2130

1230 1140 2211 1311 2121 1221 1131 1212 1122.

Examples ABBBBA Freq. _BBBB_ % Freq. A____A %

bddddb 112 nnnn 91 r

bllllb 110 llll 74 y

bccccb 107 rrrr 70 n

bßßßßb 102 dddd 70 m

bqqqqb 88 mmmm ~48% 63 l ~34%

brrrrb 79 šššš 62 d

gllllg 78 qqqq 61 b

grrrrg 62 ffff 59 š

dmmmmd 61 xxxx 54 x

dnnnnd 61 ßßßß 52 q

drrrrd 55 gggg 52 h

5. 898989 (e. g. folio 14v; max 4 words; unique words match)

There were 372 matches out of 450,188,289 checks (~ 8.26 e-5 %) in all word length-

combinations: 6000 5100 4200 3300 2400 1500 4110 3210 2310 1410 3120 2220 1320 2130

1230 1140 3111 2211 1311 2121 1221 1131 2112 1212 1122 1113.

Examples ABABAB Freq. A_A_A_ % Freq. _B_B_B %

dmdmdm 59 y 54 y

ymymym 33 r 37 r

glglgl 30 m 36 l

grgrgr 29 n 35 m

drdrdr 27 h ~48% 31 n ~52%

hbhbhb 25 š 26 w

hrhrhr 23 l 25 h

zlzlzl 20 w 23 š

x&x&x& 18 d 22 d

ydydyd 16 g 17 b

yšyšyš 13 ß 12 &

8 Interim Results

As for the chains of repeated letters often starting from the second position within a vord there

exists a group of letters (l, r, d, m, n, š) in written biblical Aramaic/Hebrew which covers up

to 85% of all matches in the investigated patterns. This is a strong indication for potential

substitution of the glyphs c and 8 by candidates from this group.

Here the low character entropy of Voynichese purchased by uniform letter chains, which

often puzzled the Voynichese analysts, turns out to be an obfuscation weakness, because it

clearly favours specific letters for repetitions.

Furthermore, the rare combination 898989 shows the preference for the letters y and r for both

positions. The regular occurrence of the letter y in the top scores for the first position makes it

a good candidate for 9. Interestingly, y isn’t a top choice for the longer chains of repeated

letters other than the letters from the group (l, r, d, m, n, š), which occur with a high frequency

in both, the first position and the repeated letters chains.

9 Pattern Matching (restricted evaluations)

With the above results we can assert restrictions to glyph mappings. For that we need to

amend the bash routine. We introduce a new constraint (element of a set of letters) for

specified positions within the vords. E. g., we define an array for the pattern ABCCDE

(like o𝓗cc89) and restrict the second, third and fourth position exclusive to the letters l, r, d.

In the definition of the set array, we use the character ‘$’ to indicate an unrestricted position

(the last ‘$’ is a terminal sign):

typeset -a set=($ lrd lrd lrd $ $ $)

#!/bin/bash
#pattern match for ABCCDE (4 words max), restricted by set constraints
typeset -a map=(0#1 0#2 0#4 0#5 1#2 1#4 1#5 2=3 2#4 2#5 4#5 $)
typeset -a arr=(6000 5100 4200 3300 2400 1500 4110 3210 2310 1410 3120 2220 1320 2130 1230
1140 3111 2211 1311 2121 1221 1131 1212 1122 1113 0000)
typeset -a set=($ lrd lrd lrd $ $ $)

typeset -i j=0 k=0 m=0 n=0
prefix=aramaic
pattern="ABCCDE-"
output=matchesABCCDE.txt

#main while loop

while ((arr[m] != arr[-1]))
do
 s=${arr[m++]}
 t=${arr[m-1]}
 echo "word length combination: "$s

 # prepare working files

 for wfile in ${prefix}*.work.txt*; do
 [-f "$wfile"] && rm $wfile
 done
 cp aramaic0.txt aramaic0.work.txt
 j=0
 n=0

 for k in 0 1 2 3; do
 j=$((j+n))
 n=${t:$k:1}
 condition="[[1 == 1 "
 for ((i=0; i<n; i++)); do
 if [["${set[j+i]}" != "$"]]; then
 condition=$condition"&& ${set[$((j+i))]} =~ \${word:$i:1} "
 fi
 done
 condition=$condition"]]"

 file="${prefix}${s:$k:1}.txt"

 wfile="${prefix}${s:$k:1}.work.txt"
 if [-f "$wfile"] && ["$wfile" != "aramaic0.work.txt"]; then wfile=$wfile".$j"; fi

 while IFS= read -r word
 do
 if eval $condition; then
 echo "$word" >> $wfile
 fi
 done < "$file"
 [! -e "$wfile"] && touch $wfile

 case "$k" in
 0) wfile1=$wfile;;
 1) wfile2=$wfile;;
 2) wfile3=$wfile;;
 3) wfile4=$wfile;;
 *) ;;
 esac
 echo "$file -> $condition -> $wfile"

 done

 # write output

 while IFS= read -r word1
 do
 while IFS= read -r word2
 do
 while IFS= read -r word3
 do
 while IFS= read -r word4
 do
 vord="${word1}${word2}${word3}${word4}"
 #echo $vord
 for constr in "${map[@]}"; do
 if [[${constr:1:1} == "=" && ${vord:${constr:0:1}:1} != ${vord:${constr:2:1}:1}]]; then
 break
 fi
 if [[${constr:1:1} == "#" && ${vord:${constr:0:1}:1} == ${vord:${constr:2:1}:1}]]; then
 break
 fi
 done
 if [[${constr} == "$"]]; then echo "$pattern$vord" >> $output; fi
 done < "$wfile4"
 done < "$wfile3"
 done < "$wfile2"
 done < "$wfile1"
done

In the first part of the main loop, which scans over all word length combinations for a 6-glyph

vord, we prepare 4 working files in each loop, as we assume for such vords to contain no

more than 4 plaintext words. These working files are generated considering the positional

restrictions defined in the set constraint array. They are therefore smaller than the original

source files and reduce the runtime3 for matching. In the second part of the main loop, we

write the pattern matches based on the working files into the output file. Again, we generate a

database for further statistical analysis.

3 runtimes for billions of checks can nonetheless be many hours or even many days

The above working files were created during the evaluation of the word-length combination

2220 for a 6-glyph vord.

6. o𝓗cc89 (e. g. folio 84v; max 4 words; restricted words match: $ lrd lrd lrd $ $)

There were 135,744,082 matches in all word length-combinations: 6000 5100 4200 3300

2400 1500 4110 3210 2310 1410 3120 2220 1320 2130 1230 1140 3111 2211 1311 2121

1221 1131 1212 1122 1113.

ABCCDE

_(dlr)(dlr)(dlr)__
Freq. ____D_ % Freq. _____E %

srllm& 14203659 b 10062859 b

bdllwn 12161367 m 10040867 m

bdllwn 11724943 h 9865506 y

bdllwn 9580210 y 9100310 n

bdllwš 8573683 n ~42% 8390646 l ~38%

trllxš 7845063 š 8190510 š

trllxš 6624786 f 7380029 f

trllyh 6578837 g 7284648 h

trllyš 6470585 k 7233629 &

trllkd 5782895 x 7094446 z

trllkd 5265436 ß 6423824 t

trllkh 5257019 t 6394293 x

trllmd 5012901 z 5382310 d

7. o𝓗cc89 (e. g. folio 84v; max 4 words; restricted words match: y r ld ld $ $)

There were 3,380,406 matches in all word length-combinations: 6000 5100 4200 3300 2400

1500 4110 3210 2310 1410 3120 2220 1320 2130 1230 1140 3111 2211 1311 2121 1221

1131 1212 1122 1113.

ABCCDE

yr(dl)(dl)__
Freq. ____D_ % Freq. _____E %

yrddwl 380176 m 298740 b

yrddwm 343944 h 285488 n

yrddwn 269626 b 280216 m

yrddwc 265554 n 235584 l

yrddwf 209358 š ~45% 221800 h ~42%

yrddwš 186448 t 215136 d

yrddw& 180856 g 211696 š

yrddwh 162154 f 190476 f

yrddwß 150066 x 187400 &

yrddwq 140288 z 164960 z

yrllhb 132746 w 159960 t

8. 98a89 (e. g. folio 7r; max 4 words; restricted words match: y dlr $ dlr y)

There were 983,195 matches in all word length-combinations: 6000 5100 4200 3300 2400

1500 4110 3210 2310 1410 3120 2220 1320 2130 1230 1140 3111 2211 1311 2121 1221

1131 1212 1122 1113.

ABCBA

y(dlr)_(dlr)y
Freq. __C__ %

ylhly 113669 b

ylmly 91294 m

ylnly 64390 š

yl&ly 54742 d

ydhdy 53184 l ~40%

yldly 49318 z

ylkly 48946 f

yrhry 47481 r

yrdry 44215 x

yrxry 44139 h

yrtry 43868 t

yrkry 39843 g

yrqry 39004 ß

In the 3 examinations above we restricted the occurrences of 9, 8 and c to (y, d, l, r). We aim

to find the candidates for the very common vord ending o<gallows>... (like in o𝓗…). With a

less restrictive reduction - (d, l, r) for 9, 8 - we get (b, n, m, y) for o and (b, n, m, y, h) for the

gallows with a probability of around 40%. A more restrictive reduction on o𝓗cc89 results in

(b, n, m, h) for o and (b, n, m, h, š) for the gallows with a slightly increased probability of

around 43%. Eventually we asked for a glyph surrounded by a pair of already allocated

glyphs 98/89 like in the rare vord 98a89. Here we get (b, m, š, d, l) with a probability of

~40%. The glyph a occurs very often in combinations like aιιυ or aιιιυ. Our strategy here is

to consider the more abnormal strings, which are nonetheless valid Voynichese vords.

 10 Results and Conclusion

As for the chains of repeated glyphs c and 8, we recognized a group of letters (l, d, r, n, m, š)

with a substitution probability of up to ~85% in the examined plaintext languages. This is an

impressively high likelihood, so we can limit here our investigation to this group. Regarding

the first glyph before such chains, mostly 9, the group is (l, d, r, y, b) with a probability of up

to ~45%. Additionally, the rare vord 898989 suggests the most likelihood for (y, r) in both

positions. We then restricted the glyphs 8, 9, and c to the top candidates from these groups to

find the candidates for the frequent combination o<gallows>… like in o𝓗cc89. The result is

the group (b, h, n, m, š) for both positions with a probability of up to ~45% of all matches. A

restrained glyph a surrounded by 89 generates the highest probabilities for the letters (b, m, š,

d, l) up to ~40%. At the end of this basic syntactical analysis, we can generate a list of the

prevalent glyphs with their most probable substitutions in the considered plaintext languages

(partially mutually exclusive, with the favourite substitution in bold letter):

In this first analysis, we left the possible semantics and narration completely out of scope.

Simple combinations of words won’t constitute meaningful sentences for the vast majority.

The rationale here is that the probability of finding grammatically correct and meaningful

sentences is higher among the more frequent combinations than among the less frequent ones.

Our yield is a plan for which substitutions to consider with priority when it comes to

semantical and narrative examinations. In this way, we hope to find out further substitutions

and the function of specifics of Voynichese like the connection between glyphs.

After this exhaustive example of a reasonable usage of constraint satisfaction, we will now

return to the theoretical disquisition on computability.

