
On Computability 2

Darius Lorek

January 26, 2024

Abstract

In the paper "On Computability 1" we demonstrated the equivalence of different

computational models for the evaluation of Turing-computable functions, which form the

broadest set of computable functions. Among other findings, we showed that constraint

satisfaction with WHILE-loops is as powerful as Turing Machines.

This paper delves deeper into the study of Turing computability. Initially, we address the

Goedelization of Turing machines and explain the renowned undecidability proofs. Then we

introduce space and time complexity classes, categorizing algorithmically solvable problems

into these classes. This exploration leads us to the major open problems in theoretical

computer science concerning the precise containment hierarchy for these classes. In this

connection we also explain the concept of nondeterminism. Finally, we discuss the

exponential time hypothesis and the boundaries of computability.

While many textbooks have covered these topics, our paper aims to present the well-known

proofs in a detailed, step-by-step manner, making them accessible even to non-experts. We

believe these proofs rightfully stand as major intellectual achievements of the past 90 years

and are worth studying.

1 Algorithms, Goedel-numbers, and undecidability problems

An algorithm is a set of instructions stipulated in a finite text. However, not every finite text

qualifies as an algorithm; the instructions must be unambiguously interpretable and executable.

Algorithms can either terminate or be capable of arbitrary continuation. When we have these

instructional finite texts at our disposal, we may wonder about the operational properties of the

algorithms they exhibit. Can we classify them all based on these properties? One of the most

intriguing insights into the theory of computation has been given and proven: the answer is no!1

Before we provide evidence for this assertion and draw the implications derived from it, we

need to introduce the concept of Goedelization.

Once again, we are working with unbounded Turing Machines (TM), addressing the broadest

class of computable functions – the Turing-computable functions. We define a TM2 as a 7-tuple

(Q, Σ, Γ, f, q0, B, F) where:

 Q is a finite set of head states

 Σ is a finite set of valid input symbols, a subset of Γ

 Γ is a finite set of valid tape symbols

f is the transition function Q × Γ → Q × Γ × {L, R}, can be undefined for some

arguments

 q0 from Q is the start state

 B is the blank symbol, a member of Γ

 F is a set of end states, F ⸦ Q

1 here we're not discussing trivial properties of the text, such as whether it begins with a 'T'
2 see also the paper “On Computability 1“

We assume that the defined Turing Machine (TM) is a 1-tape TM. However, it can be shown

that every n-tape TM can be simulated by a 1-tape TM. We enumerate the finite sets Q = {q0,

…, qt} and Γ = {a0, …, ar}. We can limit Γ to a0 = 0, a1 = 1, a2 = #, a3 = B without losing any

information, achieved by coding every state and valid tape symbol binary. Furthermore, we

assume q0 is the start state. Each transition rule f(qi, aj) = (qk, al, s) can then be specified as:

fijklm = ##bin(i)#bin(j)#bin(k)#bin(l)#bin(m)

with bin(m) = ቐ

0 𝑓𝑜𝑟 𝑠 = 𝑁
1 𝑓𝑜𝑟 𝑠 = 𝑅
10 𝑓𝑜𝑟 𝑠 = 𝐿

If we write all transition rules sequentially, we obtain a codification of the TM M in {0, 1, #}*.

We then define a transformation function h:{0, 1, #}* → {0, 1}* as h(0) = 00, h(1) = 01,

h(#) = 11 and h(w1 … ws) = h(w1) ... h(ws) with transition rules w1, …, ws. This codification of

the TM M in {0, 1}* we call Goedelization and the binary-coded number is the Goedel-number

of M.

The transition rule words fijklm have a specific structure, commencing with the current state and

input symbol, followed by the target state, output symbol and the instruction for the read/write-

head movement. For deterministic TMs, the current state and the input symbol uniquely

determine the subsequent configuration. Hence, if words wijklm and wi‘j‘k‘l‘m‘ are two distinct

valid words of a TM, so (i, j) ≠ (i‘, j‘), which means that from a specific configuration only one

subsequent configuration can be reached. We will later consider the nondeterministic case as

well. Goedel-numbers are not unique for a TM; the words wijklm as elements of a Goedel-

number, can be arranged in different orders and still describe the same TM. Additionally, a

concrete Goedel-number doesn't necessarily describe only one TM; in that case, the TMs in

question can be mutually transformed in each other.

Let u be a Goedel-number, and Mu be the Turing Machine described by u. The set K = {u | u ∈

{0, 1}*, Mu halts when run on input u} is called the special halting problem. We will show by

contradiction, that the special halting problem is not decidable.

Proof. We assume the existence of a TM Q that runs on inputs u, which can decide whether Mu

applied on u halts or not. For this, Q must halt on every input u. The transition function3 fQ of

Q is then defined as:

fQ(u) = ቄ
1 if Mu halts when run on input u

0 else

From Q, we can derive another TM R with the following transition function:

fR(u) = ቊ
1 if fQሺ𝑢ሻ = 0

undefined if fQሺ𝑢ሻ = 1

so R doesn’t halt in the case where fQ(u) = 1. So, with the assumption of an ever-halting TM Q,

we get a contradiction when running R on its own Goedel-number r:

R halts when run on r ⇔ fQ(r) = 0 ⇔ Mr doesn’t halt on r ⇔ R doesn’t halt when run on r. ↯

3 sometimes named characteristic function

The general halting problem is a set H = {u v | u, v ∈ {0, 1}*, Mu halts when run on input v}.

The undecidability for the general halting problem follows from the fact that K ⊆ H and K not

decidable.

We will continue with the proof of the undecidability for TMs with an initially blank tape.

This, in turn, contributes to proving the intriguing theorem of the general undecidability for

any property or characteristic of the TM’s transition function4. The halting problem for TMs

with a blank tape is a set H0 = {u | u ∈ {0, 1}*, Mu halts when run on a blank input}.

Proof. For every word u#v, where u, v ∈ {0, 1}* with a Goedel-number v and an input word u

we assign a TM Mu#v, which starts with a blank tape, initially writes the word u on the blank

tape, moves to the beginning of the word and acts then like Mv on u. We can easily specify a

Goedel-number for this composed TM Mu#v. Now, let’s assume H0 is decidable. We will use

the Goedel-number of Mu#v as input for the decision TM T for blank tape problems, which

decides if Mu#v halts or not. But, Mu#v acting on the blank tape halts if and only if Mv halts

on the input u. Therefore, if H0 is decidable, the general halting problem H is also decidable,

as H ⊆ H0. ↯

The Rice theorem states that for a subset S of the set R of all Turing-computable functions

(S ⊂ R), it holds C(S) = {u | fMu ∈ S} is decidable only when S = ∅ or S = R. The idea behind

the proof is to reduce this problem to one that is already known to be undecidable. Here, we do

so by utilizing the H0 problem.

Proof. We assume S ≠ ∅ and S ≠ R, and let ω be the nowhere-defined function (ω: ∅→A with

an empty domain). Is ω ∈ S, there must exist a computable function q, q ∉ S as S ≠ R. Let Q be

the TM that computes q, and w ∈ {0, 1}* be an arbitrary word. Every binary word w describes

a TM Mw. In case w has an inadequate format, so it describes a TM without movements. We

assign the word w to a TM M′w, which works as follows: with the word y ∈ {0, 1}* on its tape,

it first ignores the input and acts like Mw on a blank tape. If Mw halts so M′w acts then like Q

on the input y, and in that case, the transition function 𝑓 M′w
 = q ∉ S, otherwise 𝑓 M′w

 = ω ∈ S.

Construction of the TM M′w in the proof of Rice theorem

We have then a TM which can decide C(S) where C(S) is non-trivial (S ≠ ∅ and S ≠ R). But

then the complement set H0
തതതത ⊆ C(S) and further H0 ⊆ C(S). ↯

At first glance, the proof may seem a bit contrived as we define that a TM that never stops

still computes a function, specifically the nowhere-defined function. However, the crucial

point lies in the assumption that we can construct a TM with a composed transition function f

with q ∉ S and ω ∈ S and this hypothetical TM, if it were possible to build, would be capable

of deciding the halting problem for every Goedel-number w. Reducing a problem to one that

4 Henry Gordon Rice 1953

is already known as undecidable, is the common approach in undecidability proofs. Rice

theorem states then that any non-trivial semantic property of a language recognized by a TM

is undecidable. This finding has tremendous consequences for computability considerations.

So, based on the code alone, we lack a general criterion to identify which function is

implemented by a TM. Therefore, sets such as {u | Mu computes a constant function} or

{u, v | Mu computes the same function as Mv} are undecidable.

Up to this point, without specific specification, we've been dealing with the broadest class of

formal languages - the type-0 languages or recursively enumerable languages, which can be

recognized by unrestricted TMs. By imposing appropriate restrictions on TMs, we can

identify nested subclasses. These nested classes form the Chomsky hierarchy of formal

languages or, equivalently, the hierarchy of automaton types that accept them. Rather than

delving further into these formal language hierarchies, our focus will shift to the complexity

classes of functions realized by TMs, where we'll examine their space and time complexities5.

2 Space and time complexities

At first, we define some deterministic complexity classes and examine the formal languages

within them.

Definition. Let’s be k ∈ N and s, t: N → N with s(n) ≥ n and t(n) ≥ n for all n.

DSPACEk (s(n)) = {L | there exists a O(s(n))-space-bounded deterministic k-tape TM which

accepts L}

DTIMEk (t(n)) = {L | there exists a O(t(n))-time-bounded deterministic k-tape TM which

accepts L}

DSPACE (s(n)) = ⋃k DSPACEk(s(n))

DTIME (t(n)) = ⋃k DTIMEk(t(n))

For any total recursive time- or space-bound t(n), s(n) it holds: there exists a recursive lan-

guage L which is not in DTIME(t(n)) resp. DSPACE(s(n)). We will show it for DTIME(t(n)).

Proof. Since t(n) is total recursive, there exists a halting TM M that computes this function.

We construct a multi-tape TM M’ which accepts a language L ⊆ {0, 1}* not being in

DTIME(t(n)). On one tape of M’ we compute t(n) and use it as a counter. We consider xi, the

i-th string of the canonical order of {0, 1}*: (0, 1, 00, 01, 10, 11, 000, …), as the Goedel-

number of the TM Mi. The transition function is then encoded as a binary string in a special

format. Again, if a string has an inadequate format, it describes a TM without movements. We

consider multi-tape TMs Mi and define the language L = {xi | xi ∈ {0, 1}*, Mi does not accept

xi in t(|xi|) steps}. This language L is total recursive. The TM M’, which accepts L, works as

follows: on input w, M’ simulates M on one tape and calculates t(|w|). Then, on that tape, it

counts down every step Mi takes on w = xi. M’ simulates Mi for at most t(|w|) steps and

accepts if Mi halts before reaching t(|w|) steps and does not accept if Mi reaches the time limit

t(|w|) without reaching an accepting state.

Now, is L in DTIME(t(n))? If so, Mi would accept xi in at most t(n) steps with n = |xi|. But

then, according to the definition xi ∉ L, a contradiction. On the other hand, if xi ∊ L, then Mi

will not accept xi in t(|xi|) steps, contradicting L is in DTIME(t(n)). Both directions lead to
contradictions. Then, Mi is not time-bounded by t(n), and L ⊈ DTIME(t(n)).

5 for further exploration of formal languages, we recommend reading e. g. 'Introduction to

Automata Theory, Languages, And Computation' by John E. Hopcroft and Jeffrey D. Ullman

Thus, by employing TMs defined in a way that prevents them from meeting the specified

criteria required to verify the assumed assertions, we have shown through contradiction that

for every function or language, it is possible to find functions or languages that are genuinely

more complex in terms of DSPACE or DTIME. This establishes the existence of an infinite

hierarchy of deterministic time and space complexity classes. This assertion can be extended

to non-deterministic complexity classes as well.

The theorem above shows that for every recursive time or space complexity function f(n), there

exists a complexity function f’(n) with a language L in that complexity class, which is not in

the complexity class f(n). However, the question arises: at what point does an increase in

upgrowth lead to a new complexity class? The following theorems show the magnitude of

growth required to enter a new, higher deterministic complexity class.

In our subsequent considerations, we use TMs featuring a read-only input tape containing the

input word, a working tape, and, if necessary, a distinct counter tape where we tally every

move or each newly visited cell on the other tapes of the TM. TMs with separate input tapes

are referred to as off-line TMs. In our exploration of complexity, our focus lies on the time

and space consumption on the working tape. This enables us to investigate time complexities

below the DTIME(n) limit. Otherwise, the mere scan of the input word of length n already

takes n steps. A binary counter requires a space of log2 n to count n steps.

Definition. We term a function s(n)-space constructible if there exists a TM M that is s(n)-

space bounded and if, for any n ∈ N, there exists a word w of length n (n = |w|) on which M

indeed uses s(n) tape fields. The set of space constructible functions includes, for example,

log n, nk, 2n, n!, s1(n)*s2(n) or 2s1ሺnሻ if both s1(n) and s2(n) are space constructible. In this

context, the TM M does not need to use s(n) tape fields for every w of length n but only for

one specific w of length n. We now prove the following lemma:

Lemma. If a language L is accepted by an s(n)-space bounded TM with s(n) ≥ log2n, then L is

also accepted by an s(n)-space bounded TM that halts on every input w.

Proof. Let M be an s(n)-space bounded TM with z states and t tape symbols that accepts L. If

M accepts, it performs a sequence of at most ሺ𝑛 + 2ሻ𝑧sሺ𝑛ሻtsሺnሻ moves before the state

configuration is repeated, as there are ሺ𝑛 + 2ሻ input head positions, z states, s(n) working tape

positions, and tsሺnሻ possible different contents on the working tape with an alphabet |Γ| = t. M

can halt after counting down at most ሺ4𝑧tሻsሺnሻ ≥ ሺ𝑛 + 2ሻ𝑧sሺ𝑛ሻtsሺnሻ moves, as at this point a

state configuration has been repeated. To see this, take the log2 on both sides of the

inequation after reduction:

log(4ሺ4𝑧ሻsሺnሻ−1 ሻ ≥ logሺሺ𝑛 + 2ሻsሺ𝑛ሻሻ

→ 2 + 2ሺsሺnሻ − 1ሻ + ሺsሺnሻ − 1ሻ log z ≥ log n + log ሺ1 +
2

n
ሻ + log sሺ𝑛ሻ

→ 3 sሺnሻ − 1 ≥ log n + log sሺ𝑛ሻ (as log z ≥ 1 and log ሺ1 +
2

n
ሻ → 0 with n → ∞)

→ 2 sሺnሻ − 1 ≥ log sሺ𝑛ሻ (as we assumed that s(n) ≥ log n)

Thus, ሺ4𝑧tሻsሺnሻ ≥ ሺ𝑛 + 2ሻ𝑧sሺ𝑛ሻtsሺnሻ is correct. We then implement a counter and count the

moves from ሺ4𝑧tሻsሺnሻ downwards. Either M accepts w before the counter reaches 0, or the

counter reaches 0, indicating that M has made at least ሺ𝑛 + 2ሻ𝑧sሺ𝑛ሻtsሺnሻ moves, and we are in

a state configuration that we have encountered already before. M enters a loop, so we can halt

without accepting w. Note, we need s(n) space for a counter when counting in base 4𝑧t.

Hence, space bounded TMs using at least log2n tape space halt on every input. We will briefly

show that if 𝑠2ሺ𝑛ሻ is a full constructible function with lim
𝑛→∞

𝑠1ሺ𝑛ሻ

𝑠2ሺ𝑛ሻ
 = 0 and if 𝑠1ሺ𝑛ሻ and 𝑠2ሺ𝑛ሻ are

both at least log2 n, then there exists a language in DSPACE(𝑠2ሺ𝑛ሻሻ that is not in

DSPACE(𝑠1ሺ𝑛ሻሻ. According to the definition, 𝑠2ሺ𝑛ሻ is a full constructible function if a TM M

uses exactly 𝑠2ሺ𝑛ሻ cells on every input of length n (theorem T1).

Proof. Consider all off-line TMs with tape symbols {0, 1} and a separate working tape. We can

specify these TMs as Goedel-numbers in binary order. A prefix filled with an arbitrary number

of 1s guaranties that every TM can have an arbitrary long Goedel-number. Now, we construct

a TM M that uses 𝑠2ሺ𝑛ሻ cells but is distinct on at least one input word from any 𝑠1ሺ𝑛ሻ-space

bounded TM. We let M work on a word w of length n.

First, we delimit the working space to 𝑠2ሺ𝑛ሻ cells, by marking 𝑠2ሺ𝑛ሻ cells on a separate tape,

moving then the head synchronously to the working tape, and stopping if M tries to leave the

marked sector. We can do it, as 𝑠2ሺ𝑛ሻ is a full constructible function.

The word w will be rejected by M in the case it leaves the marked sector, ensuring that M is

𝑠2ሺ𝑛ሻ-space bounded. We then simulate with M the TM Mw on the word w, which is the binary

Goedel-number of Mw. If Mw is 𝑠1ሺ𝑛ሻ-space bounded and uses t tape symbols, we need

⎾log2 t⏋𝑠1ሺ𝑛ሻ space for this simulation, as every tape symbol needs at most ⎾log2 t⏋space

in binary codification. M accepts w if it can conduct this simulation using at most 𝑠2ሺ𝑛ሻ space,

and Mw halts without accepting w. Since M is 𝑠2ሺ𝑛ሻ space bounded, L(M) is in

DSPACE(𝑠2ሺ𝑛ሻ). We will show that L(M) is not in DSPACE(𝑠1ሺ𝑛ሻ).

Suppose there exists an 𝑠1ሺ𝑛ሻ-space bounded TM with t tape symbols that accepts L(M). The

Lemma above ensures that this TM halts on all input words. Furthermore, it appears infinitely

many times in the list of all off-line TMs with valid tape symbols {0, 1} due to the infinite

number of 1s prefixes in the Goedel-numbers of this TM. Additionally, as lim
𝑛→∞

𝑠1ሺ𝑛ሻ

𝑠2ሺ𝑛ሻ
 = 0, we

can find a sufficiently long word w with |w| = n such that⎾log2 t⏋𝑠1ሺ𝑛ሻ < 𝑠2ሺ𝑛ሻ. Let Mw be

the TM with the sufficiently long w. M has enough tape space on input w to simulate Mw and

to accept if Mw rejects. Hence, L(M) ≠ L(Mw), leading to a contradiction. Therefore, L(M) is

not in DSPACE(𝑠1ሺ𝑛ሻ).

Note that, as in most previous proofs, a diagonalization argument was employed here. We listed

all off-line TMs Mw, working on a sufficiently long own binary Goedel-numbers w

in⎾log2 t⏋𝑠1ሺ𝑛ሻ space, and showed that an appropriately constructed TM M isn’t in this list,

as L(M) ≠ L(Mw) for all these sufficiently long binary Goedel-numbers w. Additionally, we

assumed that 𝑠2ሺ𝑛ሻ is a full constructible function, but this requirement can be relaxed to simple

constructible functions.

If 𝑠2ሺ𝑛ሻ is a full constructible function, a TM M uses exactly 𝑠2ሺ𝑛ሻ cells on every input of

length n. If 𝑠2ሺ𝑛ሻ is a simple constructible function, M uses exactly 𝑠2ሺ𝑛ሻ cells on at least one

input of length n. Now we need to ensure that M is 𝑠2ሺ𝑛ሻ-space bounded. To achieve this, we

employ a TM M1, that marks 𝑠2ሺ𝑛ሻ cells on some input w. Σ is the input alphabet for M1. M

operates with two traces on the input tape, utilizing the alphabet Σ × {0, 1}. The first trace is

processed as if it were the input for M₁, and the second trace as the code w of a TM Mw with

the alphabet Σ × {0, 1}. The modification, compared to the TM M in the previous proof, is

that M now places 𝑠2ሺ𝑛ሻ boundaries on tapes 1 and 2 through the simulation of M1 on the first

trace. This ensures that M is 𝑠2ሺ𝑛ሻ-space bounded, and rejects if these boundaries are

violated.

Note that all common functions s(n) ≥ n are also full space-constructible.

3 Density of the time complexity hierarchy

In terms of time complexities, the number of tapes plays a significant role. While we

diagonalize over all possible multi-tape TMs, for simulations, we need to use a TM with a

concrete number of tapes. This process incurs a loss of log2 n time when a 2-tape TM is

employed for this simulation.

Consider a 2-tape TM M, where the cells of the first tape are divided into two traces, and the

second tape is solely used for copying purposes. The first tape is not limited on both sides. At

the beginning of the simulation, the input word is written on tape 1. The upper trace is empty,

and the input word is placed in the lower trace. The r/w head cell is symbolised as H. To the

left or right of H are cell blocks named Bn and B-n, each of length 2n-1, where n ≥ 1:

Every move of the r/w head to the left or right is simulated by shifting the ‘pushed away’ tape

symbols form the current block into the upper trace in the opposite direction. If then H points

to an empty cell in the lower trace, symbols are drawn onto the H position. For example, after

two left moves, the configuration on tape 1 would be as follows:

Please note that we retain all other symbols in their original cells until we need a new symbol

in H from the next left or right 2n-1 block. Thus, another left move on tape 1 would result in:

In a further left move, block B-3 must be moved towards H, and block B2 must be moved away:

Now we work again within the inner blocks until we need a-8 resp. a0 in H for which we would

need to perform the extensive shift again. So, the simulation of the next left resp. right move

would result in (left):

resp. right move:

We utilize tape 2 exclusively for the block copy process. Now, let’s determine the additional

steps required by these head movements in comparison to the head movements of an ordinary

TM M’ which uses a tape without traces. The most time-consuming operation in this process is

the shift of a whole block into the upper trace of the neighbouring block, along with the shift of

a new block from the opposite direction onto cell H. We refer to this operation as the Bi

operation. It can occur at most every 2i-1 moves for the block Bi because, before the Bi operation,

all blocks B1, B2, …, Bi-1 must be fully filled. Therefore, the first Bi operation cannot occur

before the 2i-1-th move of the simulated ordinary TM M’. When M’ operates in t(n) time, our

simulation performs Bi operations only for an i such that i ≤ log2 tሺnሻ + 1. Each such Bi opera-

tion takes up to m2i moves (m ≥ 3), as time needed for copying a block is proportional to the

block’s length. When M’ makes t(n) moves, the outlined simulation using a 2-trace tape incurs:

t1(n) = ෍ ቀm2i 𝑡ሺ𝑛ሻ

 2i−1 ቁ
log2 tሺnሻ +1

𝑖=1
 (A)

moves. From equation (A), we can derive t1(n) = 2m ⋅ t(nሻ ⋅ ⎾log2tሺnሻ + 1⏋→ t1(n) < 4m ⋅
t(n) ⋅ log2tሺnሻ. A multi-trace tape simulation of one-trace tape TMs isn't limited to single

tape TMs, but it can also be applied to multi-tape TMs without any additional time loss. In

this scenario, we treat all the blocks Bi on different tapes as one block Bi, all blocks Bi+1 as

one block Bi+1, and so on. Similarly, all cells H are treated as one cell H. We only employ a

larger set of tape symbols in cells having k traces, k even and k > 2, and necessarily a more

complex transition function. In time complexity considerations, we are free to enlarge both.

The constant factor 4m in the above inequation is negligible. Therefore, if a language L is

accepted by an m-tape TM Mm within the time complexity t(n), then it is accepted by a 2-tape

TM M2 within the time complexity t(n) ⋅ log2tሺnሻ. We can now prove the following theorem:

If 𝑡2ሺ𝑛ሻ is a full time-constructible function, and lim
𝑛→∞

𝑡1ሺ𝑛ሻ log 𝑡1ሺ𝑛ሻ

𝑡2ሺ𝑛ሻ
 = 0, then there exists a

language in DTIME(𝑡2ሺ𝑛ሻሻ that is not in DTIME(𝑡1ሺ𝑛ሻሻ (theorem T2).

Proof. The proof is analogous to the proof in the space case. We construct a TM M that is

𝑡2ሺ𝑛ሻ-time bounded but distinct on at least one input word from any 𝑡1ሺ𝑛ሻ-time bounded TM.

M works as follows: it operates on the input word w as a Goedel-number of the TM Mw and

simulates Mw on w. M has a fixed number of tapes, so for certain TMs Mw, M might have

fewer tapes than Mw. However, as demonstrated earlier, every multi-tape TM can be

simulated by a 2-tape TM with a logarithmic time cost (log2𝑡1ሺnሻ). Moreover, Mw may use

more tape symbols than the fixed number of M’s tape symbols. This can incur at most a

constant factor of time c, as these tape symbols of Mw can be encoded with tape symbols of

M, which utilize a constant factor more space to be scanned in every head move.

To ensure that M simulates Mw for at most 𝑡2ሺ𝑛ሻ steps and halts, 𝑡2ሺ𝑛ሻ must be a full time-

constructible function. An additional tape is then used to run simultaneously a TM that precisely

requires 𝑡2ሺ𝑛ሻ time on every input of length n, ensured because 𝑡2ሺ𝑛ሻ is full time-constructible.

M accepts w only if Mw completes processing on w and rejects it. We can specify the Goedel-

number w of the TM Mw with a preceding 1s prefix so that w can be arbitrarily long. If Mw is a

𝑡1ሺ𝑛ሻ-time bounded TM and there exists a sufficiently long Goedel-number w for Mw (which

is ensured), such that c ⋅ log 𝑡1ሺ|𝑤|ሻ ⋅ 𝑡1ሺ|𝑤|ሻ ≤ 𝑡2ሺ|𝑤|ሻ, the simulation will halt. In that case,

w ∈ L(M) if and only if w ∉ L(Mw). It holds that L(M) ≠ L(Mw) for every 𝑡1ሺ𝑛ሻ-time bounded

Mw. Therefore L(M) is in DTIME(𝑡2ሺ𝑛ሻሻ - DTIME(𝑡1ሺ𝑛ሻሻ.

Example. If 𝑡1ሺ𝑛ሻ = 2n and 𝑡2ሺ𝑛ሻ = n ⋅ log 𝑛 ⋅ 2n then

lim
𝑛→∞

𝑡1ሺ𝑛ሻ log 𝑡1ሺ𝑛ሻ

𝑡2ሺ𝑛ሻ
 → lim

𝑛→∞

2n log 2n

𝑛 log 𝑛 2n
 = lim

𝑛→∞

1

log 𝑛
 = 0

so DTIME(2nሻ ⊊ DTIME(n ⋅ log n ⋅ 2nሻ.

Above theorems show that even a relatively modest growth increase in t(n) establishes a new

complexity class in both space and time. However, there are lower bounds for this growth. For

instance, the function n ⋅ 2n versus the function 2n does not constitute a new time-complexity

class under the defined conditions, which require, among other things, the simulation of an n-

tape TM with a 2-tape TM, decelerating the processing by a factor of log2tሺnሻ.

4 Nondeterministic Turing Machines and Savitch theorem

We need to introduce the concept of nondeterminism to understand important open problems

in theoretical computer science, which have persisted without solutions for decades, including

the most prominent among them – the P-NP problem.

A nondeterministic Turing Machine is a theoretical model of computation where the transition

function f: Q × Γ → Q × Γ × {L, R} is replaced by the transition relation r: Q × Γ → Q × Γ ×

{L, R}. This means that given a state q ∈ Q and a symbol α ∈ Γ on the tape, the TM may

proceed in many different ways. There is not only one possible next state q’ together with the

written symbol α’ and the head movement direction L or R. In complexity inquiries, the

shortest way from the initial state q0 to a final state h is to be considered.

There are evident relations among different complexity classes DSPACE, DTIME, NSPACE,

and NTIME, and some less apparent. It is clear that DTIME(fሺnሻ) ⊆ DSPACE(fሺnሻ + 1), as

within f(n) time, a TM can visit at most f(n) + 1 tape cells. Furthermore, it holds

NTIME(fሺnሻ) ⊆ DTIME(cfሺnሻ), as a fሺnሻ-time bounded nondeterministic TM Mn with z

states, t tape symbols and k tapes has at most zሺfሺnሻ + 1ሻktk fሺnሻ state configurations on an

input w of length n. This number can be bounded by d fሺnሻ ≥ zሺfሺnሻ + 1ሻktk fሺnሻ with

d = zሺt + 1ሻ3k for all f(n) ≥ 1 as:

zfሺnሻሺt + 1ሻ3k fሺnሻ ≥ zfሺnሻሺt + 1ሻ2k fሺnሻtk fሺnሻ ≥ zሺfሺnሻ + 1ሻktk fሺnሻ

→ zfሺnሻ−1ሺt + 1ሻ2k fሺnሻ ≥ ሺfሺnሻ + 1ሻk

→ ሺfሺnሻ − 1ሻ log z + 2kfሺnሻ logሺt + 1ሻ ≥ k logሺfሺnሻ + 1ሻ

→
fሺnሻ−1

k
 log z +2fሺnሻ logሺt + 1ሻ ≥ logሺfሺnሻ + 1ሻ

and a deterministic k-tape TM M can decide whether Mn accepts w of length n by generating

a list of all possible state configurations that can be reached from the initial state

configuration. This process can be executed in quadratic time relative to the total number of

state configurations m, as from any state configuration ci ∈ {c1, c2, ..., cm}, at most all

configurations can be reached ci → (c1 ∨ c2 ∨ … ∨ cm), resulting in a total of m2 possibilities.

Since the list of all reachable state configurations is no longer than ሺd2ሻfሺnሻ
times a constant b

for the length of the description of one state configuration, the time is limited by cfሺnሻ for a

constant c.

Less obvious is the theorem6 stating that if f(n) is a full space-constructible function and f(n) ≥

log2n then NSPACE(fሺnሻ) ⊆ DSPACE(f 2ሺnሻ).

Proof. Let Mn be a f(n)-space bounded nondeterministic TM. There exists a constant c such that

there are at most cfሺnሻ state configurations for an input word w of length n. If Mn accepts w in

the shortest path, so within a sequence of at most cfሺnሻ moves, reaching the maximum of moves

when Mn goes through all state configurations toward the final state. If Mn repeats a state

configuration, it is not following the shortest path toward the final state. In complexity analyses

of nondeterministic TMs, we mostly consider only the shortest paths to the final state.

We define I1
𝑖

→ I2 as a path from the state configuration I1 to the state configuration I2 in at

most 2i moves. We can determine whether I1
𝑖

→ I2 by evaluating if I1
𝑖−1
ሱሮ I’ and I’

𝑖−1
ሱሮ I2 for

every I’. This involves two evaluations of state configuration changes, each in at most 2i−1

moves. To achieve this, we use a recursive function 'det', call it with the parameters det(I1, I’,

i-1) and det(I’, I2, i-1), and halt the recursive calls when i reaches 0. This function can be

implemented on a deterministic TM M, where each recursive call would require space for the

call parameters I1, I2, I’ and i. I1, I2 and I’ are state configurations, each of maximal length fሺnሻ.

The parameter i can be encoded in binary representation using at most m · fሺnሻ cells, taking

into account that Mn makes a maximum of cfሺnሻ moves. The counter for these moves requires

no more than⎾log2cfሺnሻ⏋= fሺnሻ⎾log2c⏋cells, where m =⎾𝑙𝑜𝑔2𝑐⏋. Therefore, the parameter

block requires a maximum of ሺm + 3ሻ · fሺnሻ cells, and is recursively used no more than i times.

In total, we need space for a maximum of (m + 3) · f(n) · m · f(n) = (m2 + 3m) f 2ሺnሻ cells.

In the above proof of Savitsch's theorem, certain details have been omitted. It's worth noting

that the state configuration I’ doesn't necessarily represent a reachable configuration in Mn’s

run but rather an arbitrarily configuration of maximal length fሺnሻ. In this proof, we check any

configuration that falls within the fሺnሻ length boundary. Thus, we don’t need to ensure that I’

is a valid state configuration according to the transition relation of Mn. If i = 0, we only need to

determine if I1 = I2 or I1
𝟎
→ I2 (I2 reachable from I1 in 20= 1 step). For this, we need to hold

available the transition relation of Mn on a tape of M. However, this takes no more than ሺj +
1ሻ · fሺnሻ space, where j is the maximal number of subsequent configuration states in the

transition relation of the nondeterministic TM Mn.

Additionally, we must keep track of the already examined I’s within the recursive calls of 'det'.

Here, we can use the canonical order of all state configurations of maximal length f(n) and loop

over them, increasing the canonical number by 1 in each for-loop. This, too, requires not more

than f(n) space. Consequently, the space requirement here is no larger than O(f(n)), thus we

never exceed O(f 2ሺ𝑛ሻ).

Finally, we assumed Mn and M to be off-line TMs, utilizing an additional tape solely as an input

tape for the word w. Therefore, we were not required to incorporate the input w into each state

configuration. Otherwise, in case we utilized usual TMs, we would have needed to impose the

condition f(n) ≥ n for f(n). It is also important to note that the constant k = m2 + 3m doesn’t

lead to a change in complexity class, as for every k > 0, the following holds: if an fሺnሻ-space

bounded TM M accepts language L, then a k · fሺnሻ-space bounded TM M’ also accepts L. This

can be achieved by simply merging k cells of M into one cell of M', expanding the set of tape

symbols Γ, and modifying the transition function accordingly by introducing new states in Q.

6 Savitch theorem, formulated by Walter Savitch 1943-2021

5 Chain of complexity class inclusions

The Savitch theorem directly implies, for example, that NSPACE(n2) ⊆ DSPACE(n4) or

NSPACE(3n) ⊆ DSPACE(9n). Before we introduce a more general chain of inclusions

involving deterministic and nondeterministic space and time complexity classes, let's briefly

discuss the translation lemma. The translation lemma states the following: if s1ሺnሻ, s2ሺnሻ, and

fሺnሻ are full space-constructible functions, and furthermore, s2ሺnሻ ≥ 𝑛 and fሺnሻ ≥ 𝑛, then it

holds that NSPACE(s1ሺnሻ) ⊆ NSPACE(s2ሺnሻ) → NSPACE(s1൫fሺnሻ൯) ⊆ NSPACE(s2൫fሺnሻ൯).

Proof. L1 is accepted by a nondeterministic s1൫fሺnሻ൯-space bounded TM Ms1f. Now, consider

L2 = { x$i | Ms1f accepts x, space bounded by s1ሺ|x| + iሻ} with a suffix $...$ using i-times a new

symbol ‘$’ not being in the alphabet of L1. The TM Ms1 accepting L2 works as follows: on an

input x$i Ms1 marks at first s1ሺ|x| + iሻ cells, guaranteed by the full space-constructability of

s1ሺnሻ . Then Ms1 simulates Ms1f on x and accepts if Ms1f accepts x using not more than

s1ሺ|x| + iሻ cells. With n = |x| + i Ms1 is thus s1ሺnሻ -space bounded. The assumption

NSPACE(s1ሺnሻ) ⊆ NSPACE(s2ሺnሻ) ensures that L2 is also accepted by a nondeterministic

s2ሺnሻ-space bounded TM Ms2. Now, we need to construct a TM Ms2f which simulates Ms2 and

accepts the original language L1 within the space of s2൫fሺnሻ൯. At first, Ms2f marks s2൫fሺnሻ൯

cells, which is realizable as s2ሺnሻ and fሺnሻ are full space-constructible. It holds s2ሺnሻ ≥ n →

s2൫fሺnሻ൯ ≥ fሺnሻ so Ms2f uses not more than s2൫fሺnሻ൯ space. So, Ms2f simulates Ms2 on the

input word x from the input x$i for Ms2. If the head of Ms2 is within the word x, the head of

Ms2f is at the same position. If the head of Ms2 is within the $...$ zone, Ms2f uses a counter to

record the head position of Ms2. The counter is at most log2i cells long. Ms2f accepts when Ms2

accepts x$i. If Ms2 doesn’t accept, the counter of Ms2f will increment until it expands over

s2൫fሺ|x|ሻ൯ cells, then Ms2f halts.

If x is in L1, then x$i is in L2 for an i that fulfils the equation s1ሺ|x| + iሻ = s1൫fሺ|x|ሻ൯. As

fሺnሻ ≥ n, so i = fሺ|x|ሻ − |x| fulfils the equation, and the counter needs not more than

log2ሺfሺ|x|ሻ − |x|) space in such a case. s2൫fሺ|x|ሻ൯ ≥ fሺ|x|ሻ → s2൫fሺ|𝑥|ሻ൯ − |𝑥| ≥ fሺ|x|ሻ − |𝑥|,

therefore, it is enough space available for the counter. Then, x is accepted by Ms2f if x$i is

accepted by Ms2 for an i ≥ 0. It holds then for L4, the language accepted by Ms2f, L4 = L1 and

L1 ⊆ NSPACE(s2൫fሺnሻ൯).

TMs used in the proof of the translation lemma

We outline once more the idea behind the above proof. Ms1f is an s1൫fሺnሻ൯-space bounded

TM working on x ∈ L1. Ms1 simulates Ms1f on x$i. With n = |x| + i, Ms1 is s1ሺnሻ-space

bounded. Then we assume that L(Ms1) ⊆ L(Ms2) so the language accepted by Ms1 is also

accepted by Ms2, which is s2ሺnሻ-space bounded. Eventually, we have shown that Ms2 can be

simulated by Ms1f, which is an s2൫fሺnሻ൯-space bounded TM, and therefore L4 = L(Ms2f) = L1.

It doesn’t matter that Ms1 works a priori on a longer input word of length n = |x| + i than

Ms1f, where n = |x|. Ms1 only needs enough space to simulate Ms1f. Correspondingly, Ms2f, in

its simulation of Ms2, should not exceed n = |x| + i space, but a binary counter needs not

more space than log2i ≤ i, so this requirement is fulfilled.

Similar proofs exist for DSPACE, DTIME and NTIME. With the help of the translation

lemma, we can, for example, prove that DTIME(2n) ⊊ DTIME(n2n). We assume the

opposite, DTIME(n2n) ⊆ DTIME(2n), and show that it leads to a contradiction. With s1ሺnሻ =

n2n, s2ሺnሻ = 2n and fሺnሻ = 2n we can write:

DTIME(2n22n
) ⊆ DTIME(22n

)

and with fሺnሻ = n + 2n:

DTIME(ሺn + 2nሻ2n22n
) ⊆ DTIME(2n22n

)

so both together:

DTIME(ሺn + 2nሻ2n22n
) ⊆ DTIME(2n22n

) ⊆ DTIME(22n
)

But theorem T2 above states that there is a language in DTIME(ሺn + 2nሻ2n22n
) that is not in

DTIME(22n
) if:

lim
𝑛→∞

22n
log 22n

ሺn+2nሻ2n22n = lim
𝑛→∞

1

n+2n
 = 0. ↯

If our assumption DTIME(n2n) ⊆ DTIME(2n) is false, and on the other hand, DTIME(2n) ⊆

DTIME(n2n), where a class of a smaller time period is always in a class of a bigger time

period, then it holds: DTIME(2n) ⊊ DTIME(n2n). Note that this can’t be shown immediately

from theorem T2 as:

lim
𝑛→∞

2n log 2n

𝑛 2n = 1.

Also, with the help of the translation lemma, we prove the following theorem for

nondeterministic space hierarchy in a polynomial range. For 𝛼 > 0 and r ≥ 0 it holds:

NSPACE(nr) ⊊ NSPACE(nr+α).

Proof. For every non-negative real number r, we can find positive integers s and t such that it

holts: r ≤
s

t
 <

s+1

t
 ≤ r + 𝛼. So, it is sufficient to show that for every s and t:

NSPACE(n
s

t

) ⊊ NSPACE(n

s+1

t).

We show that the opposite, NSPACE(n
s+1

t

) ⊆ NSPACE(n

s

t), leads to a contradiction. Using

the translation lemma and f(n) = nሺs+iሻt, we get:

NSPACE(nሺs+1ሻሺs+iሻ) ⊆ NSPACE(ns ሺs+iሻ) (A)

For i ≥ 1 we have s(s + i) ≤ (s + 1)(s + i – 1) and it holds:

NSPACE(nsሺs+iሻ) ⊆ NSPACE(nሺs + 1ሻሺs + i – 1ሻ) (B)

We use alternating (A) for i = s, s-1, …, 0 and (B) for i = s, s-1, …, 1 and get:

NSPACE(nሺs+1ሻ2s) ⊆ NSPACE(nሺs ሻ2s) ⊆ NSPACE(nሺs + 1ሻሺ2s – 1ሻ) ⊆ NSPACE(n𝑠 ሺ2𝑠−1ሻ) ⊆

… ⊆ NSPACE(nሺs+1ሻs) ⊆ NSPACE(ns2) → NSPACE(nሺ2s2+2sሻ) ⊆ NSPACE(ns2).

Savitch theorem says that NSPACE(ns2
) ⊆ DSPACE(n2s2

), theorem T1 that DSPACE(n2s2
)

⊊ DSPACE(n2s2+2s) and it holds also DSPACE(n2s2+2𝑠) ⊆ NSPACE(n2s2+2s). Altogether

then:

NSPACE(nሺs+1ሻ2s) ⊊ NSPACE(n2s2+2s) ↯.

The assumption NSPACE(n
s+1

t

) ⊆ NSPACE(n

s

t) is then false, the inclusion in the other

direction is obvious, so eventually:

NSPACE(n
s

t

) ⊊ NSPACE(n

s+1

t) for all positive integers s and t.

Such a dense complexity hierarchy, as determined for nondeterministic space classes, has not

yet been proven for time hierarchies. An analogy to the Savitch theorem, which plays a central

role in the above proofs, has not been found for time complexities. We will briefly explore time

complexity concepts in the next chapter. In a broader view, the following illustrates the subset

relations between diverse complexity classes:

DSPACE(log n) ⊆ NSPACE(log n) ⊆ DTIME(nk) ⊆ NTIME(nk) ⊆ DSPACE(nk) ⊆ DTIME(2nk
)

⊆ NTIME(2nk
) ⊆ DSPACE(2nk

) for k ∈ N

or in the usual short notation:

DLOGSPACE ⊆ NLOGSPACE ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE

Furthermore, it holds that D(EXP)iTIME ⊆ N(EXP)iTIME ⊆ (EXP)iSPACE where (EXP)i

represents i times iterated exponential functions. Due to the Savitch theorem with

NSPACE(sሺnሻ) ⊆ DSPACE(s2ሺnሻ), PSPACE = ⋃ DSPACE൫nk൯ =k ∈ N ⋃ NSPACE൫nk൯k ∈ N

and EXPSPACE = ⋃ DSPACEሺ2nk
ሻ =k ∈ N ⋃ NSPACEሺ2nk

ሻk ∈ N . Additionally, complexity

considerations regarding time below the limit of TIME(n), where n = |x|, have no sense as we

need at least n moves to read the input word.

One of the big questions in theoretical computer science is whether any of these relations are

proper subsets of the sets to the right, meaning we can replace ⊆ by ⊊. The most prominent

among them is the P ≠ NP? question. However, from the time hierarchy theorem and

the space hierarchy theorem, we know that P ⊊ EXPTIME, NP ⊊ NEXPTIME and PSPACE

⊊ EXPSPACE.

We do not address complexity class hardness or completeness problems here, nor do we discuss

complementary sets. For further exploration of these topics, refer to the relevant literature in

theoretical computer science, as exemplarily listed at the end of this paper.

6 The exponential time hypothesis

The trivial simulation of a nondeterministic TM by a deterministic TM, trying all possible

values of each transition, yields NTIME(tሺn)) ⊆ DTIME(2tሺnሻ). For many problems, it can be

https://en.wikipedia.org/wiki/EXPSPACE
https://en.wikipedia.org/wiki/Time_hierarchy_theorem
https://en.wikipedia.org/wiki/Space_hierarchy_theorem

proved that they are equivalent to the satisfiability of 3-CNF (conjunctive normal form)

Boolean formulas. In complexity theory, the exponential time hypothesis is an unproven

assumption suggesting that the satisfiability of 3-CNF Boolean formulas cannot be solved in

sub-exponential time. This implies that all equivalent problems are not solvable in sub-

exponential time either.

First, let us briefly explain how a general CNF Boolean formula can be transformed into a 3-

CNF Boolean formula7. In general CNF formulas, the OR clauses can contain more than 3

variables. Therefore, we need to convert these clauses so they are not longer than 3 variables.

We provide an example for this transformation. Let C1 be a CNF formula C1 := (x1 ∨ x2 ∨ x3

∨ x4 ∨ x5 ∨ x6 ∨ x7) ∧ w1 ∧ w2, where the clauses w1, w2 are not longer than 3 variables, so we

only need to transform the first clause – if necessary, every other clause longer than 3 can be

transformed in the same way. We introduce new variables y1, y2, y3, z1 and z2 and write:

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6 ∨ x7)
SAT
ሱۛሮ (x1 ∨ x2 ∨ y1) ∧ (x3 ∨ x4 ∨ y2) ∧ (x5 ∨ x6 ∨ y3) ∧ (x7 ∨

¬y1 ∨ ¬y2 ∨ ¬y3)
SAT
ሱۛሮ (x1 ∨ x2 ∨ y1) ∧ (x3 ∨ x4 ∨ y2) ∧ (x5 ∨ x6 ∨ y3) ∧ (x7 ∨ ¬y1 ∨ z1) ∧

(¬y2 ∨ ¬y3 ∨ z2) ∧ (¬z1 ∨ ¬z2)

Note that these formulas are not equivalent, but we do not ask for equivalence here. The

second and third formulas are satisfiable only if the original formula is satisfiable. If the

original formula is false with x1 = x2 = x3 = x4 = x5 = x6 = x7 = 0, the converted formulas

cannot be made true. In this way, we pass on the original satisfiability to the derived formulas.

The second derivation is necessary as the last clause is still longer than 3 after the first

derivation. Note further that this transformation can be done in polynomial time, as it requires

no more than log2n transformation iterations, where n is the number of variables in the

original clause. The satisfiability problem of formulas in CNF is thus reduced to 3-CNF

satisfiability.

Unfortunately, this reduction approach cannot be extended to 2-CNF formulas, as not every 3-

CNF formula can be transformed into a 2-CNF formula in compliance with satisfiability at

all. To clarify this, consider the following example - when we talk here about dependency

between two Boolean variables, we mean that these variables occur in the same clause of a 2-

CNF formula. Let’s first examine how it would work if we had two variables, y1 and y2, each

dependent only on either x1 or x2. In this case, we could transform (x1 ∨ x2)
SAT
ሱۛሮ (x1 ∨ y1) ∧ (x2

∨ y2) ∧ (¬y1 ∨ ¬y2), keeping the satisfiability property intact, as on x1 = x2 = 0, the new

formula cannot be made true, and on the other hand, when x1 ≠ x2 or x1 = x2 = 1, we can

always find a value assignment that satisfies the resulting 2-CNF.

Now, let's attempt to transform a simple 3-CNF formula with only one clause into a 2-CNF

formula (x1 ∨ x2 ∨ x3)
SAT
ሱۛሮ … ∧ (y1 ∨ y2) ∧… Assume that the value of a clause B = (y1 ∨ y2)

is dependent on the value assignment of clause A = (x1 ∨ x2 ∨ x3) because there are clauses of

the form (¬)x1/x2/x3 ∨ (¬)y1/y2 in the resulting 2-CNF formula. B can’t be a constant clause; if

it were, always resulting in 1, it could be simply deleted from the derived formula. However,

B must be 1 if one of the three variables x1, x2 or x3 is 1, so it is dependent on all three

variables from A. Having only two variables in B that are dependent on the values of three

variables in A means that at least one variable, y1 or y2, is dependent on two variables from A.

7 see, for example, the Tseytin transformation in the literature or on the internet for how any

general Boolean formula can be transformed into a CNF Boolean formula

Without loss of generality, assume that y1 is dependent on x1 and x2. But then, all three

possible non-symmetric derivations fail to keep satisfiability:

…(x1 ∨ x2)… → …(x1 ∨ y1) ∧ (x2 ∨ y1) ∧ (y1 ∨ …)…

but on x1 = x2 = 0, the new formula can be made true ↯

…(x1 ∨ x2)… → …(x1 ∨ y1) ∧ (x2 ∨ y1) ∧ (¬y1 ∨ …)…

but on x1 ≠ x2, the new formula can be made false ↯

…(x1 ∨ x2)… → …(x1 ∨ y1) ∧ (x2 ∨ ¬y1) ∧ (y1 ∨ …)…

but on x1 = 1 and x2 = 0 the new formula can be made false ↯

Therefore, a new 2-CNF would not reflect the satisfiability of the original formula when one

new variable is dependent on two original variables. In the end, only trivial reductions like the

following are possible when transferring 3-CNF to 2-CNF: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)
SAT
ሱۛሮ x1 ∨ x2. The satisfaction of 2-CNF is solvable in polynomial time, so a reduction of 3-

CNF satisfiability to 2-CNF satisfiability in polynomial time would imply that P = NP. The

lack of such a possibility for general transfer of 3-CNF to 2-CNF suggests that probably P ≠

NP.

Problems solvable in P are considered manageable by computers; they can provide a solution

within a reasonable runtime, even when scaled up with an increasing input length. In our

paper “On Computability 1” we considered constraint satisfaction systems and the efficient

solvability of problems defined within those systems. We defined the constraints as

containing relations of one variable or relations between two variables. Does this mean that

problems defined in this way are inherently of polynomial complexity, similar to 2-CNF

satisfiability? This question will be addressed in a future paper. For now, we briefly direct our

attention to another topic: the limits of computability.

7 Non-computable functions

Shortly after algorithmic procedures began to be formalized, questions arose about the limits

of resource consumption by algorithms. For a brief period until the mid-1920s, there was a

belief that there was nothing beyond the so-called primitive-recursive functions. Primitive-

recursive functions are those that can be constructed from simple basic functions like constant

0 function, projections onto an argument, and successor function through composition and

primitive recursion. However, in 1926, Wilhelm Ackermann found a function that did not

fit into this definition schema. Its space and time consumption, due to its enormous

numerical growth, exceeded those of primitive-recursive functions. Ackermann provided a

cumbersome definition that included another auxiliary function. Later, a simplified definition

was presented by Rózsa Péter and others. In complexity analysis, the following version is

often given, which has the same asymptotic runtime behavior:

A1(n) = 2n if n ≥ 1,

Ak(1) = 2 if k ≥ 2,
Ak(n) = Ak-1(Ak(n - 1)) if n ≥ 2 and k ≥ 2

The functions Ak can be interpreted as a natural continuation of addition, multiplication,

exponentiation, etc.:

A1(n) = 2 + 2 + 2 … + 2 = 2n
A2(n) = 2 · 2 · 2 … · 2 = 2n

https://de.wikipedia.org/wiki/R%C3%B3zsa_P%C3%A9ter

A3(n) = 222…2

We can prove that A is not a primitive-recursive function by showing that A grows faster

than any primitive-recursive function f. Thus, for any given n-variables primitive-recursive

function f, there exists an integer k such that for all variables x1, …, xn, it holds:

Ak(max(x1, …, xn)) > f(x1, …, xn)

Proof. Firstly, we need to prove a lemma that ensures that if the functions g1, …, gm and h

satisfy the above inequation, then the function f, a functional composition of g1, …, gm and h,

f = h ○ (g1, …, gm), also satisfies the inequation (lemma L1). For that, assume the existence

of integers k0, k1, …, km such that:

Aki(max(x1, …, xn)) > gi(x1, …, xn) for m ≥ i ≥ 1

and

Ak0(max(y1, …, ym)) > h(y1, …, ym)

for all x1, …, xn and y1, …, ym. We define an integer k = max(k0, k1, …, km) + 2 so that:

h(y1, …, ym) = h(g1(x1, …, xn), …, gm(x1, …, xn)) < Ak0(max(g1(x1, …, xn), …, gm(x1, …,

xn))) < Ak0(max(Ak1(max(x1, …, xn)), Ak2(max(x1, …, xn)), …, Akm(max(x1, …, xn))))

= Ak0(Ak-2(max(x1, …, xn))) ≤ Ak-2(Ak-2(max(x1, …, xn))) < Ak-2(Ak-1(max(x1, …, xn)))

-- because of Ak(x) > Ak-1(x) --

= Ak-1(max(x1, …, xn) + 1) ≤ Ak(max(x1, …, xn))

-- because of Ak(x) = Ak-1(Ak(x - 1)) and Ak(x)≥ Ak-1(x + 1) --

→ f(x1, …, xn) < Ak(max(x1, …, xn)) for all x1, …, xn

Secondly, we need the proof of a lemma that states that an (n + 1)-variables function f,

defined by the primitive-recursive n-variables function g and the (n + 2)-variables primitive-

recursive function h as:

f(x1, …, xn, 0) = g(x1, …, xn) and f(x1, …, xn, y + 1) = h(x1, …, xn, y, f(x1, …, xn, y))

assuming the existence of integers kg, kh ≥ 1such that for all x1, …, xn, y and z:

Akg(max(x1, …, xn)) > g(x1, …, xn) and Akh(max(x1, …, xn, y, z)) > h(x1, …, xn, y, z)

implies that:

Ak(max(x1, …, xn, y)) > f(x1, …, xn, y) for all x1, …, xn, y and an integer k ≥ 1 (lemma L2).

Let’s now be k = max(kg, kh) + 3 so that:

f(x1, …, xn, y) = h(x1, …, xn, y - 1, f(x1, …, xn, y - 1)) = h(x1, …, xn, y – 1, h(x1, …, xn, y – 2, …,
f(x1, …, xn, 0))…ሻሻ = h(x1, …, xn, y – 1, h(x1, …, xn, y – 2, …, g(x1, …, xn))..)) < Akh(max(x1, …,
xn, y – 1, Akh(max(x1, …, xn, y – 2, …, Akg(max(x1, …, xnሻሻ…ሻሻሻሻ ≤ Ak-3(max(x1, …, xn, y – 1,

Ak-3(max(x1, …, xn, y – 2, …, Ak-3(max(x1, …, xn, 0, Ak-3(max(x1, …, xn)ሻሻ…ሻሻሻሻ ≤

Ak-3(max(x1, …, xn, y – 1, Ak-3(max (x1, …, xn, y – 2, …, Ak-3(max(x1, …, xn, 0, Ak-2(max(x1, …,
xn) - 1ሻ…ሻሻሻሻ <

-- because of Ak(y) ≥ Ak-1(y + 1) --

Ak-2(max(x1, …, xn)+ y) ≤ Ak-2(2·max(x1, …, xn, y)) < Ak(max(x1, …, xn, y))

-- because of Ak(x) = Ak-1(Ak(x - 1)) and Ak(x) > x, the last ‘<’ because of Ak(y) > Ak-2(2y) --

→ f(x1, …, xn, y) < Ak(max(x1, …, xn, y)) for all x1, …, xn, y

With these two lemma results, we can prove the original statement that the Ackermann

function A is not primitive-recursive by induction on the number of compositions and

primitive recursions. To simplify the notation, we write 𝝒 = max(x1, …, xn).

Proof. If the derivation of f requires no compositions or primitive recursions, there are three

possible elementary cases:

if f is a constant function whose value is c, we set k = c, so f(x1, …, xn) = c < Ac(𝝒) = Ak(𝝒),

because it holds k < Ak(y) for y > 1,

if f is a projection function whose value is xi, we set k = 1, so f(x1, …, xn) = xi < A1(𝝒),

because it holds A1(y) = 2y for y ≥ 1,

if f is a successor function, we set k = 1, so f(x) = x + 1 < A1(x) for x > 1,

because it holds A1(y) = 2y for y ≥ 1

The induction step is straightforward. Assuming the statement holds for all functions

requiring r compositions and primitive recursions, if f requires r + 1 compositions and

primitive recursions, there are two possibilities:

if f is derived through composition from g1, …, gm and h, and the hypothesis holds for each of

g1, …, gm, and h, then lemma L1 ensures the existence of a number k such that

f(x1, …, xn) < Ak(𝝒)

if f is derived through primitive recursions from g1, …, gm and h, and the hypothesis holds for

each of g1, …, gm, and h, then lemma L2 ensures the existence of a number k such that

f(x1, …, xn) < Ak(𝝒)

With the finding that function A grows faster than any primitive-recursive function, we can

easily prove through contradiction that A is not primitive-recursive.

Proof. Assume A is primitive-recursive. Then, according to the proof above, there must be a k

such that Ak(max(x,y)) > Ax(y) for all x, y, so for k = x = y too. But then Ak(k) > Ak(k). ↯.

It is not possible to determine a priori, in an efficient way, the number of recursive calls

needed for a computation of Ax(y). In procedural computing languages, WHILE-loops must

be employed to implement the Ackermann function; FOR-loops alone would not suffice. In

our paper “On Computability 1”, we demonstrated that the procedural formalism with

WHILE-loops is equivalent to Turing-computability, which, in fact, encompasses all

computable functions. In terms of recursion theory, we use the term ‘μ-recursivity' to refer to

the class of functions that can be computed by Turing machines. This topic is a subject of

computability theory, and we mention it parenthetically in this paper, as our focus here is on

the complexity of computational processes.

The space and time consumption of the Ackermann function is tremendous; for instance, the

modified Ackermann function defined above results in 2128 ≈ 3,4028 e+38 for A4(3) and the

numbers higher than A4(4) cannot be feasibly computed as the result surpasses the number of

atoms in the visible universe, and high numbers naturally result in high space requirements.

Despite its staggering resource demands, the Ackermann function remains computable.

In the last section, we delve into functions that are well-defined but not computable. This

implies that these functions are not even μ-recursive, meaning there exist no Turing Machines

capable of computing them. The following are definitions for such functions, known as

generalized busy beaver functions:

Σ(n, m): the largest number of non-zeros printable by an n-state, m-symbol TM started on an

initially blank tape before halting

S(n, m): the largest number of steps taken by an n-state, m-symbol TM started on an initially

blank tape before halting

Then, it is not feasible to implement universal TMs that can compute these numbers. What we

can do, however, is run all implementations of n-state, m-symbol TMs until they either halt or

repeat the configuration state. In the deterministic case, we can ascertain that a TM will not

halt if it repeats a configuration state. We can then count the non-zeros for the TMs that have

halted, determining the highest number as for Σ or the highest number of moves taken as for

S. This is feasible for small numbers. For instance, the results for Σ(2, 2) or Σ(3, 2) are

known, along with the TMs that generate them. Below are the definitions of TMs computing

Σ(2, 2) = 4 and Σ(3, 2) = 6:

Σ(2, 2) TM

Σ(3, 2) TM

In the picture above, the symbol before ‘;’ represents the read symbol on the tape, and after

‘;’, the symbol to write into the cell. While Σ(4, 2) = 13, the exact value of the 5-state busy

beaver Σ(5, 2) is still unknown. The best candidate for this function as of the end of 2023 is

the following TM:

Σ(5, 2) TM

We can implement this TM in a short bash script8 and count the 1s produced by the script in

the output file:

#!/bin/bash
busy beaver 5-state
count afterwards with: $ grep -o 1 bb5.txt|wc -w

declare -A tm
tm[A,0]=1B2
tm[A,1]=1C0
tm[B,0]=1C2
tm[B,1]=1B2
tm[C,0]=1D2
tm[C,1]=0E0
tm[D,0]=1A0
tm[D,1]=1D0
tm[E,0]=1H2
tm[E,1]=0A0

declare -a arr=($(for i in {1..20000}; do echo 0; done))

final=0
stat=A
typeset -i n=15000 cell=0 m=0 r=0
output="bb5.txt"
[-e "$output"] && rm $output

echo "Turing Machine: ${tm[A,0]} ${tm[A,1]} ${tm[B,0]} ${tm[B,1]} ${tm[C,0]}
${tm[C,1]} ${tm[D,0]} ${tm[D,1]} ${tm[E,0]} ${tm[E,1]}"
echo "---"

main while loop
while !((final))
do

if [[$stat == "A"]]; then ((r++)); fi
if !((m % 100000)); then echo $m; fi
if [[$stat == "E" && ($cell == 0)]]; then final=1; fi

arr[n]=${tm[$stat,$cell]:0:1}
move=${tm[$stat,$cell]:2:1}
stat=${tm[$stat,$cell]:1:1}
((n = n + $move - 1))
cell=arr[n]
((m++))

done

echo "steps: $m"
echo "visits of A: $r"
echo ${arr[*]} >> $output
exit

8 runnable e. g. on Windows’ Cygwin, a collection of GNU and Open Source Linux tools

We allocate here a tape of 20000 cells, which is sufficient for the calculation, and place the

r/w-head on the cell n = 15000 in state ‘A’ at the beginning - the tape contains initially only

0s. In the definition of the transition function (tm[X,A] = BY0/2), where X,Y ∊ Q (set of

states) and A,B ∊ Γ = {0, 1} (tape symbols), a rightmost ‘0’ indicates a head movement to the

left and a ‘2’ a head movement to the right. So, we can use the array index n to specify a new

position of the head as n = n + 0/2 - 1. We count the moves and the number of times the initial

state 'A' has been visited. The last content of the tape is then saved in the output file. Here are

the results:

steps: 47176870

visits of A: 16332

$ grep -o 1 bb5.txt|wc -w

4098

Hence, for the time being, it has been demonstrated in 47176870 head moves that Σ(5, 2) is

greater than or equal to 4098. Regarding the 5-state busy beaver game, I have read that out of

all possible TMs, 21 holdouts are still refusing to halt. The estimation is that by around 2040,

all should have either stopped or begun repeating configurations, rendering them unable to

accept, and at that point, we will know the exact value of Σ(5, 2).

However, must we wait for all of them to stop or repeat configurations until then? Let's

consider the TM described above. We can analyse the head movements and the tape content.

The TM operates in cycles. In each cycle, the machine adds two 1s to the left edge of the

marked block for every triplet of cells in the block. To do so, the machine converts two 1s

from a triplet to 0s, creating a pattern like …100100<100>10011… with two trailing 1s at the

right end. Successively, it then converts all 0s within the block back to 1s. At the end of each

cycle, the machine adds three additional 1s to both the left and right of the already marked

block. The marked block grows from n cells to n + 2 *⎿n − 2⏌/ 3 + 6 cells in each cycle.

Now, let's explore the break criterion for this process. The TM is in the 'A' state 16332 times

during processing. In the ‘A’ state, the head cell and the left neighbour cell must contain a 1,

and the second-left neighbour cell must contain a 0 to reach the halting state ‘h’

(…01A100100<100>10011…). This is the only situation where the block between the

leftmost 1 and the rightmost 1, which includes both, has a length divisible by 3. Therefore, a

value of n that satisfies the equation n mod 3 = 0 becomes our break criterion. The following

script calculates the value of n for each cycle and breaks the calculation on n mod 3 = 0. After

a few initial moves of the TM, we can start the first regular cycle with a value n = 10. The

47176870 moves of the TM defined above took ~1,5 hours of runtime on my laptop, while the

cycle loop calculation took only a few milliseconds:

#!/bin/bash

final=0
typeset -i A=0 n=10

main while loop
while !((final))
do

((A = (n - 2) % 3))
((n = (2 * (n - 2 - A) / 3) + n + 6))
echo "cycle for n: $n, A: $A"
echo "---"
if !((n % 3)); then final=1; fi

done

((result = (n / 3) + 2))
echo "Number of 1's: $result"
exit

As mentioned before, calculating Σ(n, 2) for TMs, where n > 5, is practically infeasible. For

the time being, Σ(6, 2) is estimated to be at least 10↑↑15, where ↑ is the Knuth's up-arrow9. ↑↑

represents here a tetration, an exponentiation tower, so 10↑↑15 is:

15-times 1010…10

Finally, we provide the proof for non-computability of S(n, m) and Σ(n, m) with m ≥ 2 for a

sufficiently large n. Importantly, we use only two tape symbols in the proof, {0, 1}, which

implies its applicability to cases with more symbols as well.

Proof. Let's assume that S(n) resp. Σ(n) is computable, and contradict it. This implies the

existence of TMs MS and MΣ, which evaluate S(n) and Σ(n) respectively. Given an input of n

1s, they produce S(n) resp. Σ(n) 1s and then halt.

Now, let's construct a composite TM MS’ that works as follows: it writes n 1s on an empty

tape, doubles the 1s (so on a tape with n 1s, it will produce 2n 1s), evaluates S(n), and finally

clears all 1s before halting. Constructing a TM that writes n 1s on an initially blank tape is

trivial; it can be done with n states by writing a 1 for each 0, changing the state qi → qi+1, and

moving the head to the right until i + 1 = n, then halting. Now, consider the last three phases

of MS’: doubling, evaluating S(n) and cleaning of the tape. If MS’ requires n0 states for these

three phases, then for writing n0 1s on an initially blank tape plus these three phases, it needs

n0 + n0 = N states. However, MS’ writes then N 1s on the tape in the first two phases,

evaluates S(N), and eventually cleans the tape of the S(N) 1s. The cleaning alone takes S(N)

moves, so MS’ needs more than S(N) moves before halting. This contradicts the assertion that

MS computes S(n), the largest number of moves taken by an n-state TM started on an initially

blank tape, as MS’ takes more moves for n = N. ↯

In analogy, we can create a TM MΣ’, which writes n 1s on an initially blank tape, doubles the

1s, computes Σ(n), and in the last step, searches for the first 0 on the tape, replaces it with 1,

and halts. If we need n0 states for the last three phases (doubling, computing Σ(n), and

increasing the number of 1s on the tape by one), then for writing n0 1s on an empty tape plus

the three phases, n0 + n0 = N states should be sufficient. However, MΣ’ writes Σ(N) + 1 1s

symbols on the tape. Therefore, Σ(n) cannot be the largest number of non-zeros printable by

an n-state TM started on an initially blank tape, as it’s not true for n = N. ↯

These elegant contradictions establish that S(n) and Σ(n) are not computable for sufficiently

large values of n. The presented busy beaver TMs demonstrate the ability to compute S(n) or

Σ(n) for small values of n - for instance, Σ(3) = 6, Σ(4) = 13, Σ(5) ≥ 4098 (with the

expectation of determining the exact value in the future). However, a pertinent question

emerges: at what threshold of the number of states, which we denote as NCL (Number of

States Computability Limit), do S(n) and Σ(n) transit into non-computability? This question

extends to TMs with more than two tape symbols. Given that the computability of S(n) and

Σ(n) is equivalent to the halting problem, the identification of NCL would give us an upper

limit for decidability as well.

These questions, along with the specifics of cycle loop calculations for busy beaver TMs, will

be revisited in a further paper.

9 result found by Pavel Kropitz in 2022

8 Conclusion

Of course, it is not feasible to fully encompass the evolution of theoretical computer science

in a short paper, given the span of the past 90 years since the groundbreaking theses of Alan

Turing and Kurt Gödel in the 1930s, as Turing, in his work 'On Computable Numbers, with

an Application to the Entscheidungsproblem' (May, 1936), reformulated Gödel's results from

1931.

Drawing on key theorems developed over the past 90 years, we aim to provide a brief

overview of important areas in theoretical computer science, including undecidability

problems, complexity classes, nondeterminism, the exponential time hypothesis, and the

boundaries of computability. Thanks to these theorems, we understand that constructing a

complete and contradiction-free axiomatic theory is unattainable. The Rice's theorem, a

cornerstone in computer science, delineates the boundaries of decidability concerning

properties of programs. In essence, we are unable to decide any non-trivial property of such a

program in advance. In brief, one must let the program do the computation and observe the

outcome. The exponential time hypothesis10, if true, not only implies P ≠ NP but also asserts a

stronger statement. It implies that various computational problems have reached their optimal

programs, as they are largely reducible to each other. Finally, we encounter the boundaries of

information processing and, consequently, our capability for comprehension, already by

exhausting the resources of time and space. When faced with tricky questions, like those

related to the maximal utilization of space or time, we find ourselves surpassing the

boundaries of computability.

Naturally, these findings don't merely impact theoretical computer science; they also must

extend their influence to our worldview. Concepts like truth, decidability, or cognitive ability

are thereby relativized, challenging any claim to their absoluteness. Such is not the nature of

our world. We will continue to delve into these topics.

Literature

John E. Hopcroft, Jeffrey D. Ullman “Introduction to Automata Theory, Languages, And Computation“

Chin-Liang Chang, Richard Char-Tung Lee “Symbolic Logic and Mechanical Theorem Proving“

Larry Wos, “Automated Reasoning (33 Basic Research Problems)“

Walter Savitch, “Deterministic simulation of nondeterministic Turing Machines (Detailed Abstract)“

Wolfgang J. Paul “Komplexitätstheorie“

Rainer Klar “Digitale Rechenautomaten“

Richard Blum, Christine Bresnahan “Linux Command Line and Shell Scripting Bible“

10 postulated by Impagliazzo and Paturi 1999

https://www.amazon.com/Richard-Blum/e/B004MPC65G/ref=dp_byline_cont_book_1
https://www.amazon.com/Christine-Bresnahan/e/B00EKM0XVK/ref=dp_byline_cont_book_2
https://en.wikipedia.org/wiki/Exponential_time_hypothesis#CITEREFImpagliazzoPaturi1999

