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Abstract  

 

In the paper "On Computability 1" we demonstrated the equivalence of different 

computational models for the evaluation of Turing-computable functions, which form the 

broadest set of computable functions. Among other findings, we showed that constraint 

satisfaction with WHILE-loops is as powerful as Turing Machines.  

This paper delves deeper into the study of Turing computability. Initially, we address the 

Goedelization of Turing machines and explain the renowned undecidability proofs. Then we 

introduce space and time complexity classes, categorizing algorithmically solvable problems 

into these classes. This exploration leads us to the major open problems in theoretical 

computer science concerning the precise containment hierarchy for these classes. In this 

connection we also explain the concept of nondeterminism. Finally, we discuss the 

exponential time hypothesis and the boundaries of computability. 

While many textbooks have covered these topics, our paper aims to present the well-known 

proofs in a detailed, step-by-step manner, making them accessible even to non-experts. We 

believe these proofs rightfully stand as major intellectual achievements of the past 90 years 

and are worth studying. 

 

1 Algorithms, Goedel-numbers, and undecidability problems 
 

An algorithm is a set of instructions stipulated in a finite text. However, not every finite text 

qualifies as an algorithm; the instructions must be unambiguously interpretable and executable. 

Algorithms can either terminate or be capable of arbitrary continuation. When we have these 

instructional finite texts at our disposal, we may wonder about the operational properties of the 

algorithms they exhibit. Can we classify them all based on these properties? One of the most 

intriguing insights into the theory of computation has been given and proven: the answer is no!1 

Before we provide evidence for this assertion and draw the implications derived from it, we 

need to introduce the concept of Goedelization. 

Once again, we are working with unbounded Turing Machines (TM), addressing the broadest 

class of computable functions – the Turing-computable functions. We define a TM2 as a 7-tuple 

(Q, Σ, Γ, f, q0, B, F) where: 

 

 Q is a finite set of head states 

 Σ is a finite set of valid input symbols, a subset of Γ 

 Γ is a finite set of valid tape symbols  

f is the transition function Q × Γ → Q × Γ × {L, R}, can be undefined for some 

arguments 

 q0 from Q is the start state  

 B is the blank symbol, a member of Γ 

 F is a set of end states, F ⸦ Q 

 

 
1 here we're not discussing trivial properties of the text, such as whether it begins with a 'T' 
2 see also the paper “On Computability 1“ 



We assume that the defined Turing Machine (TM) is a 1-tape TM. However, it can be shown 

that every n-tape TM can be simulated by a 1-tape TM. We enumerate the finite sets Q = {q0, 

…, qt} and Γ = {a0, …, ar}. We can limit Γ to a0  = 0, a1 = 1, a2 = #, a3 = B without losing any 

information, achieved by coding every state and valid tape symbol binary. Furthermore, we 

assume q0 is the start state. Each transition rule f(qi, aj) = (qk, al, s) can then be specified as: 

 

fijklm = ##bin(i)#bin(j)#bin(k)#bin(l)#bin(m) 

 

with bin(m) = ቐ

0 𝑓𝑜𝑟 𝑠 = 𝑁
1 𝑓𝑜𝑟 𝑠 = 𝑅
10 𝑓𝑜𝑟 𝑠 = 𝐿

 

 

If we write all transition rules sequentially, we obtain a codification of the TM M in {0, 1, #}*. 

We then define a transformation function h:{0, 1, #}* → {0, 1}* as h(0) = 00, h(1) = 01, 

h(#) = 11 and h(w1 … ws) = h(w1) ... h(ws) with transition rules w1, …, ws. This codification of 

the TM M in {0, 1}* we call Goedelization and the binary-coded number is the Goedel-number 

of M. 

 

The transition rule words fijklm have a specific structure, commencing with the current state and 

input symbol, followed by the target state, output symbol and the instruction for the read/write-

head movement. For deterministic TMs, the current state and the input symbol uniquely 

determine the subsequent configuration. Hence, if words wijklm and wi‘j‘k‘l‘m‘ are two distinct 

valid words of a TM, so (i, j) ≠ (i‘, j‘), which means that from a specific configuration only one 

subsequent configuration can be reached. We will later consider the nondeterministic case as 

well. Goedel-numbers are not unique for a TM; the words wijklm as elements of a Goedel-

number, can be arranged in different orders and still describe the same TM. Additionally, a 

concrete Goedel-number doesn't necessarily describe only one TM; in that case, the TMs in 

question can be mutually transformed in each other. 

 

Let u be a Goedel-number, and Mu be the Turing Machine described by u. The set K = {u | u ∈ 

{0, 1}*, Mu halts when run on input u} is called the special halting problem. We will show by 

contradiction, that the special halting problem is not decidable.  

 

Proof. We assume the existence of a TM Q that runs on inputs u, which can decide whether Mu 

applied on u halts or not. For this, Q must halt on every input u. The transition function3 fQ of 

Q is then defined as: 

 

fQ(u) = ቄ
1 if Mu halts when run on input u

0 else
 

 

From Q, we can derive another TM R with the following transition function: 

 

fR(u) = ቊ
1 if fQሺ𝑢ሻ = 0

undefined  if fQሺ𝑢ሻ = 1
 

 

so R doesn’t halt in the case where fQ(u) = 1. So, with the assumption of an ever-halting TM Q, 

we get a contradiction when running R on its own Goedel-number r: 

 

R halts when run on r ⇔ fQ(r) = 0 ⇔ Mr doesn’t halt on r ⇔ R doesn’t halt when run on r.    ↯ 

 
3 sometimes named characteristic function  



 

The general halting problem is a set H = {u v | u, v ∈ {0, 1}*, Mu halts when run on input v}. 

The undecidability for the general halting problem follows from the fact that K ⊆ H and K not 

decidable. 

  

We will continue with the proof of the undecidability for TMs with an initially blank tape. 

This, in turn, contributes to proving the intriguing theorem of the general undecidability for 

any property or characteristic of the TM’s transition function4. The halting problem for TMs 

with a blank tape is a set H0 = {u | u ∈ {0, 1}*, Mu halts when run on a blank input}.  

 

Proof. For every word u#v, where u, v ∈ {0, 1}* with a Goedel-number v and an input word u 

we assign a TM Mu#v, which starts with a blank tape, initially writes the word u on the blank 

tape, moves to the beginning of the word and acts then like Mv on u. We can easily specify a 

Goedel-number for this composed TM Mu#v. Now, let’s assume H0 is decidable. We will use 

the Goedel-number of Mu#v as input for the decision TM T for blank tape problems, which 

decides if Mu#v halts or not. But, Mu#v acting on the blank tape halts if and only if Mv halts 

on the input u. Therefore, if H0 is decidable, the general halting problem H is also decidable, 

as H ⊆ H0.   ↯ 

 

The Rice theorem states that for a subset S of the set R of all Turing-computable functions  

(S ⊂ R), it holds C(S) = {u | fMu ∈ S} is decidable only when S = ∅ or S = R. The idea behind 

the proof is to reduce this problem to one that is already known to be undecidable. Here, we do 

so by utilizing the H0 problem.  

 

Proof. We assume S ≠ ∅ and S ≠ R, and let ω be the nowhere-defined function (ω: ∅→A with 

an empty domain). Is ω ∈ S, there must exist a computable function q, q ∉ S as S ≠ R. Let Q be 

the TM that computes q, and w ∈ {0, 1}* be an arbitrary word. Every binary word w describes 

a TM Mw. In case w has an inadequate format, so it describes a TM without movements. We 

assign the word w to a TM M′w, which works as follows: with the word y ∈ {0, 1}* on its tape, 

it first ignores the input and acts like Mw on a blank tape. If Mw halts so M′w acts then like Q 

on the input y, and in that case, the transition function 𝑓 M′w
 = q ∉ S, otherwise 𝑓 M′w

 = ω ∈ S. 

 
Construction of the TM M′w in the proof of Rice theorem 

 

We have then a TM which can decide C(S) where C(S) is non-trivial (S ≠ ∅ and S ≠ R). But 

then the complement set H0
തതതത ⊆ C(S) and further H0 ⊆ C(S).   ↯ 

 

At first glance, the proof may seem a bit contrived as we define that a TM that never stops 

still computes a function, specifically the nowhere-defined function. However, the crucial 

point lies in the assumption that we can construct a TM with a composed transition function f 

with q ∉ S and ω ∈ S and this hypothetical TM, if it were possible to build, would be capable 

of deciding the halting problem for every Goedel-number w. Reducing a problem to one that 

 
4 Henry Gordon Rice 1953 



is already known as undecidable, is the common approach in undecidability proofs. Rice 

theorem states then that any non-trivial semantic property of a language recognized by a TM 

is undecidable. This finding has tremendous consequences for computability considerations. 

So, based on the code alone, we lack a general criterion to identify which function is 

implemented by a TM. Therefore, sets such as {u | Mu computes a constant function} or  

{u, v | Mu computes the same function as Mv} are undecidable. 

 

Up to this point, without specific specification, we've been dealing with the broadest class of 

formal languages - the type-0 languages or recursively enumerable languages, which can be 

recognized by unrestricted TMs. By imposing appropriate restrictions on TMs, we can 

identify nested subclasses. These nested classes form the Chomsky hierarchy of formal 

languages or, equivalently, the hierarchy of automaton types that accept them. Rather than 

delving further into these formal language hierarchies, our focus will shift to the complexity 

classes of functions realized by TMs, where we'll examine their space and time complexities5. 

 

2 Space and time complexities 
 

At first, we define some deterministic complexity classes and examine the formal languages 

within them. 

 

Definition. Let’s be k ∈ N and s, t: N → N with s(n) ≥ n and t(n) ≥ n for all n. 

DSPACEk (s(n)) = {L | there exists a O(s(n))-space-bounded deterministic k-tape TM which 

accepts L} 

DTIMEk (t(n)) = {L | there exists a O(t(n))-time-bounded deterministic k-tape TM which 

accepts L} 

DSPACE (s(n)) = ⋃k DSPACEk(s(n)) 

DTIME (t(n)) = ⋃k DTIMEk(t(n)) 

 

For any total recursive time- or space-bound t(n), s(n) it holds: there exists a recursive lan-

guage L which is not in DTIME(t(n)) resp. DSPACE(s(n)). We will show it for DTIME(t(n)). 

 

Proof. Since t(n) is total recursive, there exists a halting TM M that computes this function. 

We construct a multi-tape TM M’ which accepts a language L ⊆ {0, 1}* not being in 

DTIME(t(n)). On one tape of M’ we compute t(n) and use it as a counter. We consider xi, the 

i-th string of the canonical order of {0, 1}*: (0, 1, 00, 01, 10, 11, 000, …), as the Goedel-

number of the TM Mi. The transition function is then encoded as a binary string in a special 

format. Again, if a string has an inadequate format, it describes a TM without movements. We 

consider multi-tape TMs Mi and define the language L = {xi | xi ∈ {0, 1}*, Mi does not accept 

xi in t(|xi|) steps}. This language L is total recursive. The TM M’, which accepts L, works as 

follows: on input w, M’ simulates M on one tape and calculates t(|w|). Then, on that tape, it 

counts down every step Mi takes on w = xi. M’ simulates Mi for at most t(|w|) steps and 

accepts if Mi halts before reaching t(|w|) steps and does not accept if Mi reaches the time limit 

t(|w|) without reaching an accepting state. 

Now, is L in DTIME(t(n))? If so, Mi would accept xi in at most t(n) steps with n = |xi|. But 

then, according to the definition xi ∉ L, a contradiction. On the other hand, if xi ∊ L, then Mi 

will not accept xi in t(|xi|) steps, contradicting L is in DTIME(t(n)). Both directions lead to 
contradictions. Then, Mi is not time-bounded by t(n), and L ⊈ DTIME(t(n)).        

 
5 for further exploration of formal languages, we recommend reading e. g. 'Introduction to 

Automata Theory, Languages, And Computation' by John E. Hopcroft and Jeffrey D. Ullman 
 



Thus, by employing TMs defined in a way that prevents them from meeting the specified 

criteria required to verify the assumed assertions, we have shown through contradiction that 

for every function or language, it is possible to find functions or languages that are genuinely 

more complex in terms of DSPACE or DTIME. This establishes the existence of an infinite 

hierarchy of deterministic time and space complexity classes. This assertion can be extended 

to non-deterministic complexity classes as well. 

 

The theorem above shows that for every recursive time or space complexity function f(n), there 

exists a complexity function f’(n) with a language L in that complexity class, which is not in 

the complexity class f(n). However, the question arises: at what point does an increase in 

upgrowth lead to a new complexity class? The following theorems show the magnitude of 

growth required to enter a new, higher deterministic complexity class. 

 

In our subsequent considerations, we use TMs featuring a read-only input tape containing the 

input word, a working tape, and, if necessary, a distinct counter tape where we tally every 

move or each newly visited cell on the other tapes of the TM. TMs with separate input tapes 

are referred to as off-line TMs. In our exploration of complexity, our focus lies on the time 

and space consumption on the working tape. This enables us to investigate time complexities 

below the DTIME(n) limit. Otherwise, the mere scan of the input word of length n already 

takes n steps. A binary counter requires a space of log2 n to count n steps. 

    

Definition. We term a function s(n)-space constructible if there exists a TM M that is s(n)-

space bounded and if, for any n ∈ N, there exists a word w of length n (n = |w|) on which M 

indeed uses s(n) tape fields. The set of space constructible functions includes, for example, 

log n, nk, 2n, n!, s1(n)*s2(n) or 2s1ሺnሻ if both s1(n) and s2(n) are space constructible. In this 

context, the TM M does not need to use s(n) tape fields for every w of length n but only for 

one specific w of length n. We now prove the following lemma: 

 

Lemma. If a language L is accepted by an s(n)-space bounded TM with s(n) ≥ log2n, then L is 

also accepted by an s(n)-space bounded TM that halts on every input w. 

Proof. Let M be an s(n)-space bounded TM with z states and t tape symbols that accepts L. If 

M accepts, it performs a sequence of at most ሺ𝑛 + 2ሻ𝑧sሺ𝑛ሻtsሺnሻ moves before the state 

configuration is repeated, as there are ሺ𝑛 + 2ሻ input head positions, z states, s(n) working tape 

positions, and tsሺnሻ possible different contents on the working tape with an alphabet |Γ| = t. M 

can halt after counting down at most ሺ4𝑧tሻsሺnሻ ≥ ሺ𝑛 + 2ሻ𝑧sሺ𝑛ሻtsሺnሻ moves, as at this point a 

state configuration has been repeated. To see this, take the log2 on both sides of the 

inequation after reduction: 

 

log(4ሺ4𝑧ሻsሺnሻ−1 ሻ ≥ logሺሺ𝑛 + 2ሻsሺ𝑛ሻሻ 

→ 2 + 2ሺsሺnሻ − 1ሻ + ሺsሺnሻ − 1ሻ log z ≥ log n + log ሺ1 + 
2

n
ሻ + log sሺ𝑛ሻ 

→ 3 sሺnሻ − 1 ≥ log n + log sሺ𝑛ሻ (as log z ≥ 1 and log ሺ1 +  
2

n
ሻ → 0 with n → ∞) 

→ 2 sሺnሻ  − 1 ≥ log sሺ𝑛ሻ (as we assumed that s(n) ≥ log n) 

 

Thus, ሺ4𝑧tሻsሺnሻ ≥ ሺ𝑛 + 2ሻ𝑧sሺ𝑛ሻtsሺnሻ  is correct. We then implement a counter and count the 

moves from ሺ4𝑧tሻsሺnሻ downwards. Either M accepts w before the counter reaches 0, or the 

counter reaches 0, indicating that M has made at least ሺ𝑛 + 2ሻ𝑧sሺ𝑛ሻtsሺnሻ moves, and we are in 

a state configuration that we have encountered already before. M enters a loop, so we can halt 

without accepting w. Note, we need s(n) space for a counter when counting in base 4𝑧t.         

 



Hence, space bounded TMs using at least log2n tape space halt on every input. We will briefly 

show that if 𝑠2ሺ𝑛ሻ is a full constructible function with lim
𝑛→∞

𝑠1ሺ𝑛ሻ

𝑠2ሺ𝑛ሻ
 = 0 and if 𝑠1ሺ𝑛ሻ and 𝑠2ሺ𝑛ሻ are 

both at least log2 n, then there exists a language in DSPACE( 𝑠2ሺ𝑛ሻሻ  that is not in 

DSPACE(𝑠1ሺ𝑛ሻሻ. According to the definition, 𝑠2ሺ𝑛ሻ is a full constructible function if a TM M 

uses exactly 𝑠2ሺ𝑛ሻ cells on every input of length n (theorem T1). 

 

Proof. Consider all off-line TMs with tape symbols {0, 1} and a separate working tape. We can 

specify these TMs as Goedel-numbers in binary order. A prefix filled with an arbitrary number 

of 1s guaranties that every TM can have an arbitrary long Goedel-number. Now, we construct 

a TM M that uses 𝑠2ሺ𝑛ሻ cells but is distinct on at least one input word from any 𝑠1ሺ𝑛ሻ-space 

bounded TM. We let M work on a word w of length n.  

First, we delimit the working space to 𝑠2ሺ𝑛ሻ cells, by marking 𝑠2ሺ𝑛ሻ cells on a separate tape, 

moving then the head synchronously to the working tape, and stopping if M tries to leave the 

marked sector. We can do it, as 𝑠2ሺ𝑛ሻ is a full constructible function. 

The word w will be rejected by M in the case it leaves the marked sector, ensuring that M is 

𝑠2ሺ𝑛ሻ-space bounded. We then simulate with M the TM Mw on the word w, which is the binary 

Goedel-number of Mw. If Mw is 𝑠1ሺ𝑛ሻ-space bounded and uses t  tape symbols, we need 

⎾log2 t⏋𝑠1ሺ𝑛ሻ space for this simulation, as every tape symbol needs at most ⎾log2 t⏋space 

in binary codification. M accepts w if it can conduct this simulation using at most 𝑠2ሺ𝑛ሻ space, 

and Mw halts without accepting w. Since M is 𝑠2ሺ𝑛ሻ space bounded, L(M) is in 

DSPACE(𝑠2ሺ𝑛ሻ). We will show that L(M) is not in DSPACE(𝑠1ሺ𝑛ሻ).  

Suppose there exists an 𝑠1ሺ𝑛ሻ-space bounded TM with t tape symbols that accepts L(M). The 

Lemma above ensures that this TM halts on all input words. Furthermore, it appears infinitely 

many times in the list of all off-line TMs with valid tape symbols {0, 1} due to the infinite 

number of 1s prefixes in the Goedel-numbers of this TM. Additionally, as lim
𝑛→∞

𝑠1ሺ𝑛ሻ

𝑠2ሺ𝑛ሻ
 = 0, we 

can find a sufficiently long word w with |w| = n such that⎾log2 t⏋𝑠1ሺ𝑛ሻ <  𝑠2ሺ𝑛ሻ. Let Mw be 

the TM with the sufficiently long w. M has enough tape space on input w to simulate Mw and 

to accept if Mw rejects. Hence, L(M) ≠ L(Mw), leading to a contradiction. Therefore, L(M) is 

not in DSPACE(𝑠1ሺ𝑛ሻ).             

 

Note that, as in most previous proofs, a diagonalization argument was employed here. We listed 

all off-line TMs Mw, working on a sufficiently long own binary Goedel-numbers w 

in⎾log2 t⏋𝑠1ሺ𝑛ሻ space, and showed that an appropriately constructed TM M isn’t in this list, 

as L(M) ≠ L(Mw) for all these sufficiently long binary Goedel-numbers w. Additionally, we 

assumed that 𝑠2ሺ𝑛ሻ is a full constructible function, but this requirement can be relaxed to simple 

constructible functions. 

 

If 𝑠2ሺ𝑛ሻ is a full constructible function, a TM M uses exactly 𝑠2ሺ𝑛ሻ cells on every input of 

length n. If 𝑠2ሺ𝑛ሻ is a simple constructible function, M uses exactly 𝑠2ሺ𝑛ሻ cells on at least one 

input of length n. Now we need to ensure that M is 𝑠2ሺ𝑛ሻ-space bounded. To achieve this, we 

employ a TM M1, that marks 𝑠2ሺ𝑛ሻ cells on some input w. Σ is the input alphabet for M1. M 

operates with two traces on the input tape, utilizing the alphabet Σ × {0, 1}. The first trace is 

processed as if it were the input for M₁, and the second trace as the code w of a TM Mw with 

the alphabet Σ × {0, 1}. The modification, compared to the TM M in the previous proof, is 

that M now places 𝑠2ሺ𝑛ሻ boundaries on tapes 1 and 2 through the simulation of M1 on the first 

trace. This ensures that M is 𝑠2ሺ𝑛ሻ-space bounded, and rejects if these boundaries are 

violated.  

 

Note that all common functions s(n) ≥ n are also full space-constructible. 



3 Density of the time complexity hierarchy 
 

In terms of time complexities, the number of tapes plays a significant role. While we 

diagonalize over all possible multi-tape TMs, for simulations, we need to use a TM with a 

concrete number of tapes. This process incurs a loss of log2 n time when a 2-tape TM is 

employed for this simulation.  

 

Consider a 2-tape TM M, where the cells of the first tape are divided into two traces, and the 

second tape is solely used for copying purposes. The first tape is not limited on both sides. At 

the beginning of the simulation, the input word is written on tape 1. The upper trace is empty, 

and the input word is placed in the lower trace. The r/w head cell is symbolised as H. To the 

left or right of H are cell blocks named Bn and B-n, each of length 2n-1, where n ≥ 1: 

 

 
 

Every move of the r/w head to the left or right is simulated by shifting the ‘pushed away’ tape 

symbols form the current block into the upper trace in the opposite direction. If then H points 

to an empty cell in the lower trace, symbols are drawn onto the H position. For example, after 

two left moves, the configuration on tape 1 would be as follows: 

 

 

 
 

Please note that we retain all other symbols in their original cells until we need a new symbol 

in H from the next left or right 2n-1 block. Thus, another left move on tape 1 would result in: 

 

 
 

In a further left move, block B-3 must be moved towards H, and block B2 must be moved away: 

 

 
 

Now we work again within the inner blocks until we need a-8 resp. a0 in H for which we would 

need to perform the extensive shift again. So, the simulation of the next left resp. right move 

would result in (left): 

 

 
 

resp. right move: 



 
 

We utilize tape 2 exclusively for the block copy process. Now, let’s determine the additional 

steps required by these head movements in comparison to the head movements of an ordinary 

TM M’ which uses a tape without traces. The most time-consuming operation in this process is 

the shift of a whole block into the upper trace of the neighbouring block, along with the shift of 

a new block from the opposite direction onto cell H. We refer to this operation as the Bi 

operation. It can occur at most every 2i-1 moves for the block Bi because, before the Bi operation, 

all blocks B1, B2, …, Bi-1 must be fully filled. Therefore, the first Bi operation cannot occur 

before the 2i-1-th move of the simulated ordinary TM M’. When M’ operates in t(n) time, our 

simulation performs Bi operations only for an i such that i ≤ log2 tሺnሻ + 1. Each such Bi opera-

tion takes up to m2i moves (m ≥ 3), as time needed for copying a block is proportional to the 

block’s length. When M’ makes t(n) moves, the outlined simulation using a 2-trace tape incurs: 

 

t1(n) = ෍ ቀm2i  𝑡ሺ𝑛ሻ

 2i−1 ቁ
log2 tሺnሻ +1

𝑖=1
 (A)  

 

moves. From equation (A), we can derive t1(n) = 2m ⋅ t(nሻ ⋅ ⎾log2tሺnሻ + 1⏋→ t1(n) < 4m ⋅ 
t(n) ⋅  log2tሺnሻ. A multi-trace tape simulation of one-trace tape TMs isn't limited to single 

tape TMs, but it can also be applied to multi-tape TMs without any additional time loss. In 

this scenario, we treat all the blocks Bi on different tapes as one block Bi, all blocks Bi+1 as 

one block Bi+1, and so on. Similarly, all cells H are treated as one cell H. We only employ a 

larger set of tape symbols in cells having k traces, k even and k > 2, and necessarily a more 

complex transition function. In time complexity considerations, we are free to enlarge both. 

The constant factor 4m in the above inequation is negligible. Therefore, if a language L is 

accepted by an m-tape TM Mm within the time complexity t(n), then it is accepted by a 2-tape 

TM M2 within the time complexity t(n) ⋅  log2tሺnሻ. We can now prove the following theorem: 

If 𝑡2ሺ𝑛ሻ is a full time-constructible function, and lim
𝑛→∞

𝑡1ሺ𝑛ሻ log 𝑡1ሺ𝑛ሻ

𝑡2ሺ𝑛ሻ
 = 0, then there exists a 

language in DTIME(𝑡2ሺ𝑛ሻሻ that is not in DTIME(𝑡1ሺ𝑛ሻሻ (theorem T2). 

 

Proof. The proof is analogous to the proof in the space case. We construct a TM M that is 

𝑡2ሺ𝑛ሻ-time bounded but distinct on at least one input word from any 𝑡1ሺ𝑛ሻ-time bounded TM. 

M works as follows: it operates on the input word w as a Goedel-number of the TM Mw and 

simulates Mw on w. M has a fixed number of tapes, so for certain TMs Mw, M might have 

fewer tapes than Mw. However, as demonstrated earlier, every multi-tape TM can be 

simulated by a 2-tape TM with a logarithmic time cost (log2𝑡1ሺnሻ). Moreover, Mw may use 

more tape symbols than the fixed number of M’s tape symbols. This can incur at most a 

constant factor of time c, as these tape symbols of Mw can be encoded with tape symbols of 

M, which utilize a constant factor more space to be scanned in every head move. 

To ensure that M simulates Mw for at most 𝑡2ሺ𝑛ሻ steps and halts, 𝑡2ሺ𝑛ሻ must be a full time-

constructible function. An additional tape is then used to run simultaneously a TM that precisely 

requires 𝑡2ሺ𝑛ሻ time on every input of length n, ensured because 𝑡2ሺ𝑛ሻ is full time-constructible. 

M accepts w only if Mw completes processing on w and rejects it. We can specify the Goedel-

number w of the TM Mw with a preceding 1s prefix so that w can be arbitrarily long. If Mw is a 

𝑡1ሺ𝑛ሻ-time bounded TM and there exists a sufficiently long Goedel-number w for Mw (which 

is ensured), such that c ⋅ log 𝑡1ሺ|𝑤|ሻ ⋅ 𝑡1ሺ|𝑤|ሻ ≤  𝑡2ሺ|𝑤|ሻ, the simulation will halt. In that case, 

w ∈ L(M) if and only if w ∉ L(Mw). It holds that L(M) ≠ L(Mw) for every 𝑡1ሺ𝑛ሻ-time bounded 

Mw. Therefore L(M) is in DTIME(𝑡2ሺ𝑛ሻሻ - DTIME(𝑡1ሺ𝑛ሻሻ.    



Example. If 𝑡1ሺ𝑛ሻ = 2n and 𝑡2ሺ𝑛ሻ = n ⋅ log 𝑛 ⋅ 2n then 

 

lim
𝑛→∞

𝑡1ሺ𝑛ሻ log 𝑡1ሺ𝑛ሻ

𝑡2ሺ𝑛ሻ
 → lim

𝑛→∞

2n log 2n

𝑛 log 𝑛 2n
 = lim

𝑛→∞

1

log 𝑛 
 = 0 

 

so DTIME(2nሻ ⊊ DTIME(n ⋅  log n ⋅ 2nሻ. 

 

Above theorems show that even a relatively modest growth increase in t(n) establishes a new 

complexity class in both space and time. However, there are lower bounds for this growth. For 

instance, the function n ⋅ 2n versus the function 2n does not constitute a new time-complexity 

class under the defined conditions, which require, among other things, the simulation of an n-

tape TM with a 2-tape TM, decelerating the processing by a factor of  log2tሺnሻ. 

 

4 Nondeterministic Turing Machines and Savitch theorem 
 

We need to introduce the concept of nondeterminism to understand important open problems 

in theoretical computer science, which have persisted without solutions for decades, including 

the most prominent among them – the P-NP problem. 

 

A nondeterministic Turing Machine is a theoretical model of computation where the transition 

function f:  Q × Γ → Q × Γ × {L, R} is replaced by the transition relation r: Q × Γ → Q × Γ × 

{L, R}. This means that given a state q ∈ Q and a symbol α ∈ Γ on the tape, the TM may 

proceed in many different ways. There is not only one possible next state q’ together with the 

written symbol α’ and the head movement direction L or R. In complexity inquiries, the 

shortest way from the initial state q0 to a final state h is to be considered.      

 

There are evident relations among different complexity classes DSPACE, DTIME, NSPACE, 

and NTIME, and some less apparent. It is clear that DTIME(fሺnሻ) ⊆ DSPACE(fሺnሻ +  1), as 

within f(n) time, a TM can visit at most f(n) + 1 tape cells. Furthermore, it holds 

NTIME(fሺnሻ) ⊆ DTIME(cfሺnሻ), as a fሺnሻ-time bounded nondeterministic TM Mn with z 

states, t tape symbols and k tapes has at most zሺfሺnሻ + 1ሻktk fሺnሻ state configurations on an 

input w of length n. This number can be bounded by d fሺnሻ ≥ zሺfሺnሻ + 1ሻktk fሺnሻ with 

d = zሺt + 1ሻ3k for all f(n) ≥ 1 as: 
 

zfሺnሻሺt + 1ሻ3k fሺnሻ ≥  zfሺnሻሺt + 1ሻ2k fሺnሻtk fሺnሻ ≥  zሺfሺnሻ + 1ሻktk fሺnሻ 

→ zfሺnሻ−1ሺt + 1ሻ2k fሺnሻ ≥  ሺfሺnሻ + 1ሻk 

→ ሺfሺnሻ − 1ሻ log z + 2kfሺnሻ logሺt + 1ሻ ≥  k logሺfሺnሻ + 1ሻ 

→ 
fሺnሻ−1

k
 log z +2fሺnሻ logሺt + 1ሻ ≥  logሺfሺnሻ + 1ሻ 

 

and a deterministic k-tape TM M can decide whether Mn accepts w of length n by generating 

a list of all possible state configurations that can be reached from the initial state 

configuration. This process can be executed in quadratic time relative to the total number of 

state configurations m, as from any state configuration ci ∈ {c1, c2, ..., cm}, at most all 

configurations can be reached ci → (c1 ∨ c2 ∨ … ∨ cm), resulting in a total of m2 possibilities. 

Since the list of all reachable state configurations is no longer than ሺd2ሻfሺnሻ 
times a constant b 

for the length of the description of one state configuration, the time is limited by cfሺnሻ for a 

constant c. 



Less obvious is the theorem6 stating that if f(n) is a full space-constructible function and f(n) ≥ 

log2n then NSPACE(fሺnሻ) ⊆ DSPACE(f 2ሺnሻ). 

 

Proof. Let Mn be a f(n)-space bounded nondeterministic TM. There exists a constant c such that 

there are at most cfሺnሻ state configurations for an input word w of length n. If Mn accepts w in 

the shortest path, so within a sequence of at most cfሺnሻ moves, reaching the maximum of moves 

when Mn goes through all state configurations toward the final state. If Mn repeats a state 

configuration, it is not following the shortest path toward the final state. In complexity analyses 

of nondeterministic TMs, we mostly consider only the shortest paths to the final state.  

We define I1 
𝑖

→  I2 as a path from the state configuration I1 to the state configuration I2 in at 

most 2i moves. We can determine whether I1 
𝑖

→  I2 by evaluating if I1 
𝑖−1
ሱሮ  I’ and I’ 

𝑖−1
ሱሮ  I2 for 

every I’. This involves two evaluations of state configuration changes, each in at most 2i−1 

moves. To achieve this, we use a recursive function 'det', call it with the parameters det(I1, I’, 

i-1) and det(I’, I2, i-1), and halt the recursive calls when i reaches 0. This function can be 

implemented on a deterministic TM M, where each recursive call would require space for the 

call parameters I1, I2, I’ and i. I1, I2 and I’ are state configurations, each of maximal length fሺnሻ. 

The parameter i can be encoded in binary representation using at most m · fሺnሻ cells, taking 

into account that Mn makes a maximum of cfሺnሻ moves. The counter for these moves requires 

no more than⎾log2cfሺnሻ⏋= fሺnሻ⎾log2c⏋cells, where m =⎾𝑙𝑜𝑔2𝑐⏋. Therefore, the parameter 

block requires a maximum of ሺm + 3ሻ · fሺnሻ cells, and is recursively used no more than i times. 

In total, we need space for a maximum of (m + 3) · f(n) · m · f(n) = (m2 + 3m) f 2ሺnሻ cells.   

 

In the above proof of Savitsch's theorem, certain details have been omitted. It's worth noting 

that the state configuration I’ doesn't necessarily represent a reachable configuration in Mn’s 

run but rather an arbitrarily configuration of maximal length fሺnሻ. In this proof, we check any 

configuration that falls within the fሺnሻ length boundary. Thus, we don’t need to ensure that I’ 

is a valid state configuration according to the transition relation of Mn. If i = 0, we only need to 

determine if I1 = I2 or I1 
𝟎
→  I2 (I2 reachable from I1 in 20= 1 step). For this, we need to hold 

available the transition relation of Mn on a tape of M. However, this takes no more than ሺj +
1ሻ · fሺnሻ  space, where j is the maximal number of subsequent configuration states in the 

transition relation of the nondeterministic TM Mn.  

Additionally, we must keep track of the already examined I’s within the recursive calls of 'det'. 

Here, we can use the canonical order of all state configurations of maximal length f(n) and loop 

over them, increasing the canonical number by 1 in each for-loop. This, too, requires not more 

than f(n) space. Consequently, the space requirement here is no larger than O(f(n)), thus we 

never exceed O(f 2ሺ𝑛ሻ). 

 

Finally, we assumed Mn and M to be off-line TMs, utilizing an additional tape solely as an input 

tape for the word w. Therefore, we were not required to incorporate the input w into each state 

configuration. Otherwise, in case we utilized usual TMs, we would have needed to impose the 

condition f(n) ≥ n for f(n). It is also important to note that the constant k = m2 + 3m doesn’t 

lead to a change in complexity class, as for every k > 0, the following holds: if an fሺnሻ-space 

bounded TM M accepts language L, then a k · fሺnሻ-space bounded TM M’ also accepts L. This 

can be achieved by simply merging k cells of M into one cell of M', expanding the set of tape 

symbols Γ, and modifying the transition function accordingly by introducing new states in Q.    

 

 
6  Savitch theorem, formulated by Walter Savitch 1943-2021  
 



5 Chain of complexity class inclusions 
 

The Savitch theorem directly implies, for example, that NSPACE(n2) ⊆ DSPACE(n4) or 

NSPACE(3n ) ⊆ DSPACE(9n ). Before we introduce a more general chain of inclusions 

involving deterministic and nondeterministic space and time complexity classes, let's briefly 

discuss the translation lemma. The translation lemma states the following: if s1ሺnሻ, s2ሺnሻ, and 

fሺnሻ are full space-constructible functions, and furthermore, s2ሺnሻ  ≥ 𝑛 and fሺnሻ ≥ 𝑛, then it 

holds that NSPACE(s1ሺnሻ) ⊆ NSPACE(s2ሺnሻ) → NSPACE(s1൫fሺnሻ൯) ⊆ NSPACE(s2൫fሺnሻ൯). 

 

Proof. L1 is accepted by a nondeterministic s1൫fሺnሻ൯-space bounded TM  Ms1f. Now, consider  

L2 = { x$i | Ms1f accepts x, space bounded by s1ሺ|x| + iሻ} with a suffix $...$ using i-times a new 

symbol ‘$’ not being in the alphabet of L1. The TM Ms1 accepting L2 works as follows: on an 

input  x$i Ms1 marks at first s1ሺ|x| + iሻ cells, guaranteed by the full space-constructability of 

s1ሺnሻ . Then Ms1  simulates Ms1f  on x and accepts if Ms1f  accepts x using not more than 

s1ሺ|x| + iሻ  cells. With n = |x| + i  Ms1  is thus s1ሺnሻ -space bounded. The assumption 

NSPACE(s1ሺnሻ) ⊆ NSPACE(s2ሺnሻ) ensures that L2 is also accepted by a nondeterministic 

s2ሺnሻ-space bounded TM Ms2. Now, we need to construct a TM Ms2f which simulates Ms2 and 

accepts the original language L1 within the space of s2൫fሺnሻ൯. At first, Ms2f marks s2൫fሺnሻ൯ 

cells, which is realizable as s2ሺnሻ and fሺnሻ are full space-constructible. It holds s2ሺnሻ ≥ n → 

s2൫fሺnሻ൯ ≥  fሺnሻ so Ms2f  uses not more than s2൫fሺnሻ൯ space. So, Ms2f  simulates Ms2  on the 

input word x from the input x$i for Ms2. If the head of  Ms2 is within the word x, the head of  

Ms2f  is at the same position. If the head of Ms2 is within the $...$ zone, Ms2f uses a counter to 

record the head position of Ms2. The counter is at most log2i cells long. Ms2f accepts when Ms2 

accepts x$i. If Ms2 doesn’t accept, the counter of Ms2f will increment until it expands over 

s2൫fሺ|x|ሻ൯ cells, then Ms2f halts. 

If x is in L1, then x$i is in L2 for an i that fulfils the equation s1ሺ|x| + iሻ = s1൫fሺ|x|ሻ൯. As 

fሺnሻ ≥ n, so i = fሺ|x|ሻ − |x| fulfils the equation, and the counter needs not more than 

log2ሺfሺ|x|ሻ − |x|) space in such a case. s2൫fሺ|x|ሻ൯ ≥ fሺ|x|ሻ → s2൫fሺ|𝑥|ሻ൯ − |𝑥| ≥ fሺ|x|ሻ − |𝑥|, 

therefore, it is enough space available for the counter. Then, x is accepted by Ms2f if x$i is 

accepted by Ms2 for an i ≥ 0. It holds then for L4, the language accepted by Ms2f, L4 = L1 and 

L1 ⊆ NSPACE(s2൫fሺnሻ൯).    

 

 
TMs used in the proof of the translation lemma 

 

We outline once more the idea behind the above proof. Ms1f is an s1൫fሺnሻ൯-space bounded 

TM working on x ∈ L1. Ms1 simulates Ms1f on  x$i. With n = |x| + i, Ms1 is s1ሺnሻ-space 

bounded. Then we assume that L(Ms1) ⊆ L(Ms2) so the language accepted by Ms1 is also 

accepted by Ms2, which is s2ሺnሻ-space bounded. Eventually, we have shown that Ms2 can be 

simulated by Ms1f, which is an s2൫fሺnሻ൯-space bounded TM, and therefore L4 = L(Ms2f) = L1. 



It doesn’t matter that Ms1 works a priori on a longer input word of length n = |x| + i than 

Ms1f, where n = |x|. Ms1 only needs enough space to simulate Ms1f. Correspondingly, Ms2f, in 

its simulation of Ms2, should not exceed n = |x| + i space, but a binary counter needs not 

more space than log2i ≤ i, so this requirement is fulfilled. 

 

Similar proofs exist for DSPACE, DTIME and NTIME. With the help of the translation 

lemma, we can, for example, prove that DTIME(2n) ⊊ DTIME(n2n). We assume the 

opposite, DTIME(n2n) ⊆ DTIME(2n), and show that it leads to a contradiction. With s1ሺnሻ = 

n2n, s2ሺnሻ = 2n and fሺnሻ = 2n we can write: 

 

DTIME(2n22n
) ⊆ DTIME(22n

) 

and with fሺnሻ = n + 2n: 

DTIME(ሺn + 2nሻ2n22n
) ⊆ DTIME(2n22n

) 

so both together: 

DTIME(ሺn + 2nሻ2n22n
) ⊆ DTIME(2n22n

) ⊆ DTIME(22n
) 

 

But theorem T2 above states that there is a language in DTIME(ሺn + 2nሻ2n22n
) that is not in 

DTIME(22n
) if: 

 

lim
𝑛→∞

22n
log 22n

ሺn+2nሻ2n22n  = lim
𝑛→∞

1

n+2n 
 = 0. ↯ 

 

If our assumption DTIME(n2n) ⊆ DTIME(2n) is false, and on the other hand, DTIME(2n) ⊆ 

DTIME(n2n), where a class of a smaller time period is always in a class of a bigger time 

period, then it holds: DTIME(2n) ⊊ DTIME(n2n). Note that this can’t be shown immediately 

from theorem T2 as: 

 

lim
𝑛→∞

2n log 2n

𝑛 2n  = 1. 

 

Also, with the help of the translation lemma, we prove the following theorem for 

nondeterministic space hierarchy in a polynomial range. For 𝛼 > 0 and r ≥ 0 it holds: 
 

NSPACE(nr) ⊊ NSPACE(nr+α). 

 

Proof. For every non-negative real number r, we can find positive integers s and t such that it 

holts: r ≤ 
s

t
 < 

s+1

t
 ≤ r + 𝛼. So, it is sufficient to show that for every s and t: 

 

NSPACE(n
s

t
 
) ⊊ NSPACE(n

s+1

t ). 

 

We show that the opposite, NSPACE(n
s+1

t
 
) ⊆ NSPACE(n

s

t), leads to a contradiction. Using 

the translation lemma and f(n) = nሺs+iሻt, we get: 

 

NSPACE(nሺs+1ሻሺs+iሻ ) ⊆ NSPACE(ns ሺs+iሻ )  (A) 

 

For i ≥ 1 we have s(s + i) ≤ (s + 1)(s + i – 1) and it holds: 

 

NSPACE(nsሺs+iሻ ) ⊆ NSPACE(nሺs + 1ሻሺs + i – 1ሻ  ) (B) 

 



We use alternating (A) for i = s, s-1, …, 0 and (B) for i = s, s-1, …, 1 and get: 

 

NSPACE(nሺs+1ሻ2s ) ⊆ NSPACE(nሺs ሻ2s  ) ⊆ NSPACE(nሺs + 1ሻሺ2s – 1ሻ) ⊆ NSPACE(n𝑠 ሺ2𝑠−1ሻ ) ⊆ 

… ⊆ NSPACE(nሺs+1ሻs ) ⊆ NSPACE(ns2 ) → NSPACE(nሺ2s2+2sሻ ) ⊆ NSPACE(ns2 ). 

 

Savitch theorem says that NSPACE(ns2
) ⊆ DSPACE(n2s2

), theorem T1 that DSPACE(n2s2
) 

⊊ DSPACE(n2s2+2s ) and it holds also DSPACE(n2s2+2𝑠) ⊆ NSPACE(n2s2+2s ). Altogether 

then: 

 

NSPACE(nሺs+1ሻ2s ) ⊊ NSPACE(n2s2+2s )  ↯. 

 

The assumption NSPACE(n
s+1

t
 
) ⊆ NSPACE(n

s

t ) is then false, the inclusion in the other 

direction is obvious, so eventually: 

 

NSPACE(n
s

t
 
) ⊊ NSPACE(n

s+1

t ) for all positive integers s and t.      

 

Such a dense complexity hierarchy, as determined for nondeterministic space classes, has not 

yet been proven for time hierarchies. An analogy to the Savitch theorem, which plays a central 

role in the above proofs, has not been found for time complexities. We will briefly explore time 

complexity concepts in the next chapter. In a broader view, the following illustrates the subset 

relations between diverse complexity classes: 

 

DSPACE(log n) ⊆ NSPACE(log n) ⊆ DTIME(nk) ⊆ NTIME(nk) ⊆ DSPACE(nk) ⊆ DTIME(2nk
) 

⊆ NTIME(2nk
) ⊆ DSPACE(2nk

) for k ∈ N 

 

or in the usual short notation: 

 
DLOGSPACE ⊆ NLOGSPACE ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE 

 

Furthermore, it holds that D(EXP)iTIME ⊆ N(EXP)iTIME ⊆ (EXP)iSPACE where (EXP)i 

represents i times iterated exponential functions. Due to the Savitch theorem with 

NSPACE(sሺnሻ) ⊆ DSPACE(s2ሺnሻ), PSPACE = ⋃ DSPACE൫nk൯ =k ∈ N  ⋃ NSPACE൫nk൯k ∈ N  

and EXPSPACE = ⋃ DSPACEሺ2nk
ሻ  =k ∈ N  ⋃ NSPACEሺ2nk

ሻk ∈ N . Additionally, complexity 

considerations regarding time below the limit of TIME(n), where n = |x|, have no sense as we 

need at least n moves to read the input word. 

 

One of the big questions in theoretical computer science is whether any of these relations are 

proper subsets of the sets to the right, meaning we can replace ⊆ by ⊊. The most prominent 

among them is the P ≠ NP? question. However, from  the time hierarchy theorem and 

the space hierarchy theorem, we know that P ⊊ EXPTIME, NP ⊊ NEXPTIME and PSPACE 

⊊ EXPSPACE.  

We do not address complexity class hardness or completeness problems here, nor do we discuss 

complementary sets. For further exploration of these topics, refer to the relevant literature in 

theoretical computer science, as exemplarily listed at the end of this paper. 

 

6 The exponential time hypothesis 
 

The trivial simulation of a nondeterministic TM by a deterministic TM, trying all possible 

values of each transition, yields NTIME(tሺn)) ⊆ DTIME(2tሺnሻ). For many problems, it can be 

https://en.wikipedia.org/wiki/EXPSPACE
https://en.wikipedia.org/wiki/Time_hierarchy_theorem
https://en.wikipedia.org/wiki/Space_hierarchy_theorem


proved that they are equivalent to the satisfiability of 3-CNF (conjunctive normal form) 

Boolean formulas. In complexity theory, the exponential time hypothesis is an unproven 

assumption suggesting that the satisfiability of 3-CNF Boolean formulas cannot be solved in 

sub-exponential time. This implies that all equivalent problems are not solvable in sub-

exponential time either. 

 

First, let us briefly explain how a general CNF Boolean formula can be transformed into a 3-

CNF Boolean formula7. In general CNF formulas, the OR clauses can contain more than 3 

variables. Therefore, we need to convert these clauses so they are not longer than 3 variables. 

We provide an example for this transformation. Let C1 be a CNF formula C1 := (x1 ∨ x2 ∨ x3 

∨ x4 ∨ x5 ∨ x6 ∨ x7) ∧ w1 ∧ w2, where the clauses w1, w2 are not longer than 3 variables, so we 

only need to transform the first clause – if necessary, every other clause longer than 3 can be 

transformed in the same way. We introduce new variables y1, y2, y3, z1 and z2 and write: 

 

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6 ∨ x7) 
SAT
ሱۛሮ (x1 ∨ x2 ∨ y1) ∧ (x3 ∨ x4 ∨ y2) ∧ (x5 ∨ x6 ∨ y3) ∧ (x7 ∨ 

¬y1 ∨ ¬y2 ∨ ¬y3) 
SAT
ሱۛሮ (x1 ∨ x2 ∨ y1) ∧ (x3 ∨ x4 ∨ y2) ∧ (x5 ∨ x6 ∨ y3) ∧ (x7 ∨ ¬y1 ∨ z1) ∧ 

(¬y2 ∨ ¬y3 ∨ z2) ∧ (¬z1 ∨ ¬z2) 
 

Note that these formulas are not equivalent, but we do not ask for equivalence here. The 

second and third formulas are satisfiable only if the original formula is satisfiable. If the 

original formula is false with x1 = x2 = x3 = x4 = x5 = x6 = x7 = 0, the converted formulas 

cannot be made true. In this way, we pass on the original satisfiability to the derived formulas. 

The second derivation is necessary as the last clause is still longer than 3 after the first 

derivation. Note further that this transformation can be done in polynomial time, as it requires 

no more than log2n transformation iterations, where n is the number of variables in the 

original clause. The satisfiability problem of formulas in CNF is thus reduced to 3-CNF 

satisfiability.  

 

Unfortunately, this reduction approach cannot be extended to 2-CNF formulas, as not every 3-

CNF formula can be transformed into a 2-CNF formula in compliance with satisfiability at 

all. To clarify this, consider the following example - when we talk here about dependency 

between two Boolean variables, we mean that these variables occur in the same clause of a 2-

CNF formula. Let’s first examine how it would work if we had two variables, y1 and y2, each 

dependent only on either x1 or x2. In this case, we could transform (x1 ∨ x2) 
SAT
ሱۛሮ (x1 ∨ y1) ∧ (x2 

∨ y2) ∧ (¬y1 ∨ ¬y2), keeping the satisfiability property intact, as on x1 = x2 = 0, the new 

formula cannot be made true, and on the other hand, when x1 ≠ x2 or x1 = x2 = 1, we can 

always find a value assignment that satisfies the resulting 2-CNF. 

 

Now, let's attempt to transform a simple 3-CNF formula with only one clause into a 2-CNF 

formula (x1 ∨ x2 ∨ x3) 
SAT
ሱۛሮ … ∧ (y1 ∨ y2) ∧… Assume that the value of a clause B = (y1  ∨ y2) 

is dependent on the value assignment of clause A = (x1 ∨ x2 ∨ x3) because there are clauses of 

the form (¬)x1/x2/x3 ∨ (¬)y1/y2 in the resulting 2-CNF formula. B can’t be a constant clause; if 

it were, always resulting in 1, it could be simply deleted from the derived formula. However,  

B must be 1 if one of the three variables x1, x2 or x3 is 1, so it is dependent on all three 

variables from A. Having only two variables in B that are dependent on the values of three 

variables in A means that at least one variable, y1 or y2, is dependent on two variables from A. 

 
7 see, for example, the Tseytin transformation in the literature or on the internet for how any 

general Boolean formula can be transformed into a CNF Boolean formula 



Without loss of generality, assume that y1 is dependent on x1 and x2. But then, all three 

possible non-symmetric derivations fail to keep satisfiability: 

 

…(x1 ∨ x2)… → …(x1 ∨ y1) ∧ (x2 ∨ y1) ∧ (y1  ∨ …)…  

but on x1 = x2 = 0, the new formula can be made true ↯ 

…(x1 ∨ x2)… → …(x1 ∨ y1) ∧ (x2 ∨ y1) ∧ (¬y1 ∨ …)…  

but on x1 ≠ x2, the new formula can be made false  ↯ 

…(x1 ∨ x2)… → …(x1 ∨ y1) ∧ (x2 ∨ ¬y1) ∧ (y1  ∨ …)…  

but on x1 = 1 and x2 = 0 the new formula can be made false ↯ 

 

Therefore, a new 2-CNF would not reflect the satisfiability of the original formula when one 

new variable is dependent on two original variables. In the end, only trivial reductions like the 

following are possible when transferring 3-CNF to 2-CNF: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3) 
SAT
ሱۛሮ x1 ∨ x2. The satisfaction of 2-CNF is solvable in polynomial time, so a reduction of 3-

CNF satisfiability to 2-CNF satisfiability in polynomial time would imply that P = NP. The 

lack of such a possibility for general transfer of 3-CNF to 2-CNF suggests that probably P ≠ 

NP. 

 

Problems solvable in P are considered manageable by computers; they can provide a solution 

within a reasonable runtime, even when scaled up with an increasing input length. In our 

paper “On Computability 1” we considered constraint satisfaction systems and the efficient 

solvability of problems defined within those systems. We defined the constraints as 

containing relations of one variable or relations between two variables. Does this mean that 

problems defined in this way are inherently of polynomial complexity, similar to 2-CNF 

satisfiability? This question will be addressed in a future paper. For now, we briefly direct our 

attention to another topic: the limits of computability. 

 

7 Non-computable functions 
 

Shortly after algorithmic procedures began to be formalized, questions arose about the limits 

of resource consumption by algorithms. For a brief period until the mid-1920s, there was a 

belief that there was nothing beyond the so-called primitive-recursive functions. Primitive-

recursive functions are those that can be constructed from simple basic functions like constant 

0 function, projections onto an argument, and successor function through composition and 

primitive recursion. However, in 1926, Wilhelm Ackermann found a function that did not 

fit into this definition schema. Its space and time consumption, due to its enormous 

numerical growth, exceeded those of primitive-recursive functions. Ackermann provided a 

cumbersome definition that included another auxiliary function. Later, a simplified definition 

was presented by Rózsa Péter and others. In complexity analysis, the following version is 

often given, which has the same asymptotic runtime behavior: 

 

A1(n) = 2n   if n ≥ 1, 

Ak(1) = 2   if k ≥ 2, 
Ak(n) = Ak-1(Ak(n - 1)) if n ≥ 2 and k ≥ 2 

 

The functions Ak can be interpreted as a natural continuation of addition, multiplication, 

exponentiation, etc.: 

 

A1(n) = 2 + 2 + 2 … + 2 = 2n 
A2(n) = 2 · 2 · 2 … · 2 = 2n 

https://de.wikipedia.org/wiki/R%C3%B3zsa_P%C3%A9ter


A3(n) = 222…2

 
 

We can prove that A is not a primitive-recursive function by showing that A grows faster 

than any primitive-recursive function f. Thus, for any given n-variables primitive-recursive 

function f, there exists an integer k such that for all variables x1, …, xn, it holds: 

 
Ak(max(x1, …, xn)) > f(x1, …, xn) 

 

Proof. Firstly, we need to prove a lemma that ensures that if the functions g1, …, gm and h 

satisfy the above inequation, then the function f, a functional composition of g1, …, gm and h, 

f = h ○ (g1, …, gm), also satisfies the inequation (lemma L1). For that, assume the existence 

of integers k0, k1, …, km such that:     

 

Aki(max(x1, …, xn)) > gi(x1, …, xn) for m ≥ i ≥ 1 

and 

Ak0(max(y1, …, ym)) > h(y1, …, ym) 

 

for all x1, …, xn and y1, …, ym. We define an integer k = max(k0, k1, …, km) + 2 so that: 

 

h(y1, …, ym) = h(g1(x1, …, xn), …, gm(x1, …, xn)) < Ak0(max(g1(x1, …, xn), …, gm(x1, …, 

xn))) < Ak0(max(Ak1(max(x1, …, xn)), Ak2(max(x1, …, xn)),  …, Akm(max(x1, …, xn))))  

= Ak0(Ak-2(max(x1, …, xn))) ≤ Ak-2(Ak-2(max(x1, …, xn))) < Ak-2(Ak-1(max(x1, …, xn))) 

-- because of Ak(x) > Ak-1(x) -- 

= Ak-1(max(x1, …, xn) + 1) ≤ Ak(max(x1, …, xn))  

-- because of Ak(x) = Ak-1(Ak(x - 1)) and Ak(x)≥ Ak-1(x + 1) --  

→ f(x1, …, xn) < Ak(max(x1, …, xn)) for all x1, …, xn    

 

Secondly, we need the proof of a lemma that states that an (n + 1)-variables function f, 

defined by the primitive-recursive n-variables function g and the (n + 2)-variables primitive-

recursive function h as: 

 
f(x1, …, xn, 0) = g(x1, …, xn) and f(x1, …, xn, y + 1) = h(x1, …, xn, y, f(x1, …, xn, y)) 

 

assuming the existence of integers kg, kh ≥ 1such that for all x1, …, xn, y and z:  

 

Akg(max(x1, …, xn)) > g(x1, …, xn) and Akh(max(x1, …, xn, y, z)) > h(x1, …, xn, y, z)  
 

implies that: 

 

Ak(max(x1, …, xn, y)) > f(x1, …, xn, y) for all x1, …, xn, y and an integer k  ≥ 1 (lemma L2).  

 

Let’s now be k = max(kg, kh) + 3 so that:  
 

f(x1, …, xn, y) = h(x1, …, xn, y - 1, f(x1, …, xn, y - 1)) = h(x1, …, xn, y – 1, h(x1, …, xn, y – 2, …, 
f(x1, …, xn, 0))…ሻሻ = h(x1, …, xn, y – 1, h(x1, …, xn, y – 2, …, g(x1, …, xn))..)) < Akh(max(x1, …, 
xn, y – 1, Akh(max(x1, …, xn, y – 2, …, Akg(max(x1, …, xnሻሻ…ሻሻሻሻ ≤  Ak-3(max(x1, …, xn, y – 1, 

Ak-3(max(x1, …, xn, y – 2, …, Ak-3(max(x1, …, xn, 0, Ak-3(max(x1, …, xn)ሻሻ…ሻሻሻሻ ≤   

Ak-3(max(x1, …, xn, y – 1, Ak-3(max (x1, …, xn, y – 2, …, Ak-3(max(x1, …, xn, 0, Ak-2(max(x1, …, 
xn) - 1ሻ…ሻሻሻሻ < 

-- because of Ak(y) ≥ Ak-1(y + 1) -- 



 
Ak-2(max(x1, …, xn)+ y) ≤ Ak-2(2·max(x1, …, xn, y)) < Ak(max(x1, …, xn, y)) 

-- because of Ak(x) = Ak-1(Ak(x - 1)) and Ak(x) > x, the last ‘<’ because of Ak(y) > Ak-2(2y) -- 

→ f(x1, …, xn, y) < Ak(max(x1, …, xn, y)) for all x1, …, xn, y   
 

With these two lemma results, we can prove the original statement that the Ackermann 

function A is not primitive-recursive by induction on the number of compositions and 

primitive recursions. To simplify the notation, we write 𝝒 = max(x1, …, xn). 

 

Proof. If the derivation of f requires no compositions or primitive recursions, there are three 

possible elementary cases: 

 

if f is a constant function whose value is c, we set k = c, so f(x1, …, xn) = c < Ac(𝝒) = Ak(𝝒), 

because it holds k < Ak(y) for y > 1, 

 

if f is a projection function whose value is xi, we set k = 1, so f(x1, …, xn) = xi < A1(𝝒), 

because it holds A1(y) = 2y for y ≥ 1, 

 

if f is a successor function, we set k = 1, so f(x) = x + 1 < A1(x) for x > 1, 

because it holds A1(y) = 2y for y ≥ 1 

 

The induction step is straightforward. Assuming the statement holds for all functions 

requiring r compositions and primitive recursions, if f requires r + 1 compositions and 

primitive recursions, there are two possibilities: 

 

if f is derived through composition from g1, …, gm and h, and the hypothesis holds for each of 

g1, …, gm, and h, then lemma L1 ensures the existence of a number k such that  

f(x1, …, xn) < Ak(𝝒) 

 

if f is derived through primitive recursions from g1, …, gm and h, and the hypothesis holds for 

each of g1, …, gm, and h, then lemma L2 ensures the existence of a number k such that  

f(x1, …, xn) < Ak(𝝒)     

 

With the finding that function A grows faster than any primitive-recursive function, we can 

easily prove through contradiction that A is not primitive-recursive. 

 

Proof. Assume A is primitive-recursive. Then, according to the proof above, there must be a k 

such that Ak(max(x,y)) > Ax(y) for all x, y, so for k = x = y too. But then Ak(k) > Ak(k).     ↯.  

 

It is not possible to determine a priori, in an efficient way, the number of recursive calls 

needed for a computation of Ax(y). In procedural computing languages, WHILE-loops must 

be employed to implement the Ackermann function; FOR-loops alone would not suffice. In 

our paper “On Computability 1”, we demonstrated that the procedural formalism with 

WHILE-loops is equivalent to Turing-computability, which, in fact, encompasses all 

computable functions. In terms of recursion theory, we use the term ‘μ-recursivity' to refer to 

the class of functions that can be computed by Turing machines. This topic is a subject of 

computability theory, and we mention it parenthetically in this paper, as our focus here is on 

the complexity of computational processes.  

 

The space and time consumption of the Ackermann function is tremendous; for instance, the 

modified Ackermann function defined above results in 2128 ≈ 3,4028 e+38 for A4(3) and the 



numbers higher than A4(4) cannot be feasibly computed as the result surpasses the number of 

atoms in the visible universe, and high numbers naturally result in high space requirements. 

Despite its staggering resource demands, the Ackermann function remains computable.       

 

In the last section, we delve into functions that are well-defined but not computable. This 

implies that these functions are not even μ-recursive, meaning there exist no Turing Machines 

capable of computing them. The following are definitions for such functions, known as 

generalized busy beaver functions: 

 

Σ(n, m): the largest number of non-zeros printable by an n-state, m-symbol TM started on an 

initially blank tape before halting 
 

S(n, m): the largest number of steps taken by an n-state, m-symbol TM started on an initially 

blank tape before halting 

 

Then, it is not feasible to implement universal TMs that can compute these numbers. What we 

can do, however, is run all implementations of n-state, m-symbol TMs until they either halt or 

repeat the configuration state. In the deterministic case, we can ascertain that a TM will not 

halt if it repeats a configuration state. We can then count the non-zeros for the TMs that have 

halted, determining the highest number as for Σ or the highest number of moves taken as for 

S. This is feasible for small numbers. For instance, the results for Σ(2, 2) or Σ(3, 2) are 

known, along with the TMs that generate them. Below are the definitions of TMs computing 

Σ(2, 2) = 4 and Σ(3, 2) = 6: 

 

 
Σ(2, 2) TM 

 

 
Σ(3, 2) TM 

 

In the picture above, the symbol before ‘;’ represents the read symbol on the tape, and after 

‘;’, the symbol to write into the cell. While Σ(4, 2) = 13, the exact value of the 5-state busy 

beaver Σ(5, 2) is still unknown. The best candidate for this function as of the end of 2023 is 

the following TM: 



 
Σ(5, 2) TM 

 

We can implement this TM in a short bash script8 and count the 1s produced by the script in 

the output file: 
 
#!/bin/bash 
# busy beaver 5-state 
# count afterwards with: $ grep -o 1 bb5.txt|wc -w 
 
declare -A tm 
tm[A,0]=1B2 
tm[A,1]=1C0 
tm[B,0]=1C2 
tm[B,1]=1B2 
tm[C,0]=1D2 
tm[C,1]=0E0 
tm[D,0]=1A0 
tm[D,1]=1D0 
tm[E,0]=1H2 
tm[E,1]=0A0 
 
declare -a arr=( $(for i in {1..20000}; do echo 0; done) ) 
 
final=0 
stat=A 
typeset -i n=15000 cell=0 m=0 r=0 
output="bb5.txt" 
[ -e "$output" ] && rm $output 
 
echo "Turing Machine: ${tm[A,0]} ${tm[A,1]} ${tm[B,0]} ${tm[B,1]} ${tm[C,0]} 
${tm[C,1]} ${tm[D,0]} ${tm[D,1]} ${tm[E,0]} ${tm[E,1]}" 
echo "---" 
 
# main while loop 
while !(( final )) 
do 
 

if [[ $stat == "A" ]]; then (( r++ )); fi 
if !(( m % 100000 )); then echo $m; fi 
if [[ $stat == "E" && ( $cell == 0 ) ]]; then final=1; fi 
 
arr[n]=${tm[$stat,$cell]:0:1} 
move=${tm[$stat,$cell]:2:1} 
stat=${tm[$stat,$cell]:1:1} 
(( n = n + $move - 1 )) 
cell=arr[n] 
(( m++ )) 

 
done 
 
echo "steps: $m" 
echo "visits of A: $r" 
echo ${arr[*]} >> $output 
exit 

 

 
8 runnable e. g. on Windows’ Cygwin, a collection of GNU and Open Source Linux tools 



We allocate here a tape of 20000 cells, which is sufficient for the calculation, and place the 

r/w-head on the cell n = 15000 in state ‘A’ at the beginning - the tape contains initially only 

0s. In the definition of the transition function (tm[X,A] = BY0/2), where X,Y ∊ Q (set of 

states) and A,B ∊ Γ = {0, 1} (tape symbols), a rightmost ‘0’ indicates a head movement to the 

left and a ‘2’ a head movement to the right. So, we can use the array index n to specify a new 

position of the head as n = n + 0/2 - 1. We count the moves and the number of times the initial 

state 'A' has been visited. The last content of the tape is then saved in the output file. Here are 

the results: 

 

steps: 47176870 

visits of A: 16332 

$ grep -o 1 bb5.txt|wc -w 

4098 

 

Hence, for the time being, it has been demonstrated in 47176870 head moves that Σ(5, 2) is 

greater than or equal to 4098. Regarding the 5-state busy beaver game, I have read that out of 

all possible TMs, 21 holdouts are still refusing to halt. The estimation is that by around 2040, 

all should have either stopped or begun repeating configurations, rendering them unable to 

accept, and at that point, we will know the exact value of Σ(5, 2). 

 

However, must we wait for all of them to stop or repeat configurations until then? Let's 

consider the TM described above. We can analyse the head movements and the tape content. 

The TM operates in cycles. In each cycle, the machine adds two 1s to the left edge of the 

marked block for every triplet of cells in the block. To do so, the machine converts two 1s 

from a triplet to 0s, creating a pattern like …100100<100>10011… with two trailing 1s at the 

right end. Successively, it then converts all 0s within the block back to 1s. At the end of each 

cycle, the machine adds three additional 1s to both the left and right of the already marked 

block. The marked block grows from n cells to n + 2 *⎿n − 2⏌/ 3 + 6 cells in each cycle. 

Now, let's explore the break criterion for this process.  The TM is in the 'A' state 16332 times 

during processing. In the ‘A’ state, the head cell and the left neighbour cell must contain a 1, 

and the second-left neighbour cell must contain a 0 to reach the halting state ‘h’ 

(…01A100100<100>10011…). This is the only situation where the block between the 

leftmost 1 and the rightmost 1, which includes both, has a length divisible by 3. Therefore, a 

value of n that satisfies the equation n mod 3 = 0 becomes our break criterion. The following 

script calculates the value of n for each cycle and breaks the calculation on n mod 3 = 0. After 

a few initial moves of the TM, we can start the first regular cycle with a value n = 10. The 

47176870 moves of the TM defined above took ~1,5 hours of runtime on my laptop, while the 

cycle loop calculation took only a few milliseconds: 
 
#!/bin/bash 
 
final=0 
typeset -i A=0 n=10 
 
# main while loop 
while !(( final )) 
do 
 

(( A = ( n - 2 ) % 3 )) 
(( n = ( 2 * ( n - 2 - A ) / 3 ) + n + 6 )) 
echo "cycle for n: $n, A: $A" 
echo "---" 
if !(( n % 3 )); then final=1; fi 

 
done 
 
(( result = ( n / 3 ) + 2 )) 
echo "Number of 1's: $result" 
exit 



As mentioned before, calculating Σ(n, 2) for TMs, where n > 5, is practically infeasible. For 

the time being, Σ(6, 2) is estimated to be at least 10↑↑15, where ↑ is the Knuth's up-arrow9. ↑↑ 

represents here a tetration, an exponentiation tower, so 10↑↑15 is: 

 

15-times 1010…10

 

 

Finally, we provide the proof for non-computability of S(n, m) and Σ(n, m) with m ≥ 2 for a 

sufficiently large n. Importantly, we use only two tape symbols in the proof, {0, 1}, which 

implies its applicability to cases with more symbols as well. 

 

Proof. Let's assume that S(n) resp. Σ(n) is computable, and contradict it. This implies the 

existence of TMs MS and MΣ, which evaluate S(n) and Σ(n) respectively. Given an input of n 

1s, they produce S(n) resp. Σ(n) 1s and then halt. 

  

Now, let's construct a composite TM MS’ that works as follows: it writes n 1s on an empty 

tape, doubles the 1s (so on a tape with n 1s, it will produce 2n 1s), evaluates S(n), and finally 

clears all 1s before halting. Constructing a TM that writes n 1s on an initially blank tape is 

trivial; it can be done with n states by writing a 1 for each 0, changing the state qi → qi+1, and 

moving the head to the right until i + 1 = n, then halting. Now, consider the last three phases 

of MS’: doubling, evaluating S(n) and cleaning of the tape. If MS’ requires n0 states for these 

three phases, then for writing n0 1s on an initially blank tape plus these three phases, it needs 

n0 + n0 = N states. However, MS’ writes then N 1s on the tape in the first two phases, 

evaluates S(N), and eventually cleans the tape of the S(N) 1s. The cleaning alone takes S(N) 

moves, so MS’ needs more than S(N) moves before halting. This contradicts the assertion that 

MS computes S(n), the largest number of moves taken by an n-state TM started on an initially 

blank tape, as MS’ takes more moves for n = N.     ↯ 

 

In analogy, we can create a TM MΣ’, which writes n 1s on an initially blank tape, doubles the 

1s, computes Σ(n), and in the last step, searches for the first 0 on the tape, replaces it with 1, 

and halts. If we need n0 states for the last three phases (doubling, computing Σ(n), and 

increasing the number of 1s on the tape by one), then for writing n0 1s on an empty tape plus 

the three phases, n0 + n0 = N states should be sufficient. However, MΣ’ writes Σ(N) + 1 1s 

symbols on the tape. Therefore, Σ(n) cannot be the largest number of non-zeros printable by 

an n-state TM started on an initially blank tape, as it’s not true for n = N.     ↯  

 

These elegant contradictions establish that S(n) and Σ(n) are not computable for sufficiently 

large values of n. The presented busy beaver TMs demonstrate the ability to compute S(n) or 

Σ(n) for small values of n - for instance, Σ(3) = 6, Σ(4) = 13, Σ(5) ≥ 4098 (with the 

expectation of determining the exact value in the future). However, a pertinent question 

emerges: at what threshold of the number of states, which we denote as NCL (Number of 

States Computability Limit), do S(n) and Σ(n) transit into non-computability? This question 

extends to TMs with more than two tape symbols. Given that the computability of S(n) and 

Σ(n) is equivalent to the halting problem, the identification of NCL would give us an upper 

limit for decidability as well.     

 

These questions, along with the specifics of cycle loop calculations for busy beaver TMs, will 

be revisited in a further paper. 

 

 
9 result found by Pavel Kropitz in 2022 



8 Conclusion 
 

Of course, it is not feasible to fully encompass the evolution of theoretical computer science 

in a short paper, given the span of the past 90 years since the groundbreaking theses of Alan 

Turing and Kurt Gödel in the 1930s, as Turing, in his work 'On Computable Numbers, with 

an Application to the Entscheidungsproblem' (May, 1936), reformulated Gödel's results from 

1931. 

 

Drawing on key theorems developed over the past 90 years, we aim to provide a brief 

overview of important areas in theoretical computer science, including undecidability 

problems, complexity classes, nondeterminism, the exponential time hypothesis, and the 

boundaries of computability. Thanks to these theorems, we understand that constructing a 

complete and contradiction-free axiomatic theory is unattainable. The Rice's theorem, a 

cornerstone in computer science, delineates the boundaries of decidability concerning 

properties of programs. In essence, we are unable to decide any non-trivial property of such a 

program in advance. In brief, one must let the program do the computation and observe the 

outcome. The exponential time hypothesis10, if true, not only implies P ≠ NP but also asserts a 

stronger statement. It implies that various computational problems have reached their optimal 

programs, as they are largely reducible to each other. Finally, we encounter the boundaries of 

information processing and, consequently, our capability for comprehension, already by 

exhausting the resources of time and space. When faced with tricky questions, like those 

related to the maximal utilization of space or time, we find ourselves surpassing the 

boundaries of computability. 

 

Naturally, these findings don't merely impact theoretical computer science; they also must 

extend their influence to our worldview. Concepts like truth, decidability, or cognitive ability 

are thereby relativized, challenging any claim to their absoluteness. Such is not the nature of 

our world. We will continue to delve into these topics. 
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